1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Communication: An efficient algorithm for evaluating the Breit and spin–spin coupling integrals
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/11/10.1063/1.4795430
1.
1. T. Saue, “Principles and applications of relativistic molecular calculations,” Ph.D dissertation (Department of Chemistry, University of Oslo, 1996).
2.
2. M. Reiher and A. Wolf, Relativistic Quantum Chemistry (Wiley-VCH, Germany, 2009).
3.
3. F. Neese, J. Am. Chem. Soc. 128, 10213 (2006).
http://dx.doi.org/10.1021/ja061798a
4.
4. C. Thierfelder and P. Schwerdtfeger, Phys. Rev. A 82, 062503 (2010).
http://dx.doi.org/10.1103/PhysRevA.82.062503
5.
5. W. Liu, Phys. Chem. Chem. Phys. 14, 35 (2012).
http://dx.doi.org/10.1039/c1cp21718f
6.
6. W. Kutzelnigg and W. Liu, J. Chem. Phys. 112, 3540 (2000).
http://dx.doi.org/10.1063/1.480509
7.
7. Y. Ishikawa, Int. J. Quantum Chem., Quantum Chem. Symp. 38, 383 (1990).
http://dx.doi.org/10.1002/qua.560382438
8.
8. M. Reiher and C. Kind, J. Phys. B 34, 3133 (2001).
http://dx.doi.org/10.1088/0953-4075/34/15/317
9.
9. L. Visscher, J. Comput. Chem. 23, 759 (2002).
http://dx.doi.org/10.1002/jcc.10036
10.
10. T. Shiozaki, Chem. Phys. Lett. 479, 160 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.07.108
11.
11. M. Dupuis, J. Rys, and H. F. King, J. Chem. Phys. 65, 111 (1976).
http://dx.doi.org/10.1063/1.432807
12.
12. H. F. King and M. Dupuis, J. Comput. Phys. 21, 144 (1976).
http://dx.doi.org/10.1016/0021-9991(76)90008-5
13.
13. J. Rys, M. Dupuis, and H. F. King, J. Comput. Chem. 4, 154 (1983).
http://dx.doi.org/10.1002/jcc.540040206
14.
14. R. Lindh, U. Ryu, and B. Liu, J. Chem. Phys. 95, 5889 (1991).
http://dx.doi.org/10.1063/1.461610
15.
15. S. Reine, T. Helgaker, and R. Lindh, WIREs Comput. Mol. Sci. 2, 290 (2012).
http://dx.doi.org/10.1002/wcms.78
16.
16. M. Head-Gordon and J. A. Pople, J. Chem. Phys. 89, 5777 (1988).
http://dx.doi.org/10.1063/1.455553
17.
17. P. W. Abegg, Mol. Phys. 30, 579 (1975).
http://dx.doi.org/10.1080/00268977500102151
18.
18. P. Chandra and R. J. Buenker, J. Chem. Phys. 79, 366 (1983).
http://dx.doi.org/10.1063/1.445531
19.
19. O. Vahtras, H. Ågren, P. Jørgensen, H. J. Aa. Jensen, T. Helgaker, and J. Olsen, J. Chem. Phys. 96, 2118 (1992).
http://dx.doi.org/10.1063/1.462063
20.
20. N. Flocke and V. Lotrich, J. Comput. Chem. 29, 2722 (2008).
http://dx.doi.org/10.1002/jcc.21018
21.
21. S. Obara and A. Saika, J. Chem. Phys. 84, 3963 (1986).
http://dx.doi.org/10.1063/1.450106
22.
22.While is also a polynomial, is not.
23.
23. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).
http://dx.doi.org/10.1039/b508541a
24.
24. F. Weigend, J. Comput. Chem. 29, 167 (2008).
http://dx.doi.org/10.1002/jcc.20702
25.
25. K. Kornobis, N. Kumar, B. M. Wong, P. Lodowski, M. Jaworska, T. Andruniow, K. Ruud, and P. M. Kozlowski, J. Phys. Chem. A 115, 1280 (2011).
http://dx.doi.org/10.1021/jp110914y
26.
26. E. F. Valeev, “LIBINT, machine-generated library for efficient evaluation of molecular integrals over Gaussian” (2007).
27.
27. BAGEL, Brilliantly Advanced General Electronic-structure Library (2012). Northwestern University, Evanston, IL, USA.
28.
28. M. S. Kelley and T. Shiozaki, “Large-scale Dirac–Breit–Fock method using density fitting” (unpublished).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/11/10.1063/1.4795430
Loading
/content/aip/journal/jcp/138/11/10.1063/1.4795430
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/11/10.1063/1.4795430
2013-03-15
2014-10-22

Abstract

We present an efficient algorithm for evaluating a class of two-electron integrals of the form over one-electron Gaussian basis functions. The full Breit interaction in four-component relativistic theories beyond the Gaunt term is such an operator with n = 3. Another example is the direct spin–spin coupling term in the quasi-relativistic Breit–Pauli Hamiltonian (n = 5). These integrals have been conventionally evaluated by expensive derivative techniques. Our algorithm is based on tailored Gaussian quadrature, similar to the Rys quadrature for electron repulsion integrals (ERIs), and can utilize the so-called horizontal recurrence relation to reduce the computational cost. The CPU time for computing all six Cartesian components of the Breit or spin–spin coupling integrals is found to be only 3 to 4 times that of the ERI evaluation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/11/1.4795430.html;jsessionid=c61ot9i6k4ltj.x-aip-live-06?itemId=/content/aip/journal/jcp/138/11/10.1063/1.4795430&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: An efficient algorithm for evaluating the Breit and spin–spin coupling integrals
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/11/10.1063/1.4795430
10.1063/1.4795430
SEARCH_EXPAND_ITEM