1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Local elastic response measured near the colloidal glass transition
Rent:
Rent this article for
USD
10.1063/1.4773220
/content/aip/journal/jcp/138/12/10.1063/1.4773220
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/12/10.1063/1.4773220

Figures

Image of FIG. 1.
FIG. 1.

The solid line indicates the applied force as a function of time. The points show the measured displacement Δx of the magnetic bead. (Inset) Same data plotted as Δx against F. The dashed line is a fit to the data, with the slope leading to an effective spring constant k = 6.8 ± 0.1 pN/μm, offset vertically for clarity. The arrows indicate locations where the force was held constant. The volume fraction is ϕ = 0.55.

Image of FIG. 2.
FIG. 2.

Applied force as a function of time, for the three largest maximum forces (see Table I ). For all curves, F(t) = 0 for t < 0 s.

Image of FIG. 3.
FIG. 3.

(a) Raw image of particles, before the force is applied. (b) Difference between “before” and “after” a single force pulse is applied. (c) Difference between two “after” images for two subsequent pulses. (d) As the images are reproducible, a sequence of eight “before” pictures is averaged together, and likewise eight “after” pictures. This picture is the difference between these average images. For all pictures, the scale bar is 10 microns long, the volume fraction is ϕ = 0.49, and the applied force is F max = 0.29 nN.

Image of FIG. 4.
FIG. 4.

(a) Displacement field based on data shown in Fig. 3(b) . The arrows indicate displacements of the colloidal particles. (b) Residual displacement field after subtracting off the fit to Eq. (2) . The arrows are magnified by a factor of 5; in reality, the longest displacement vectors in panel (b) are 0.3 μm. The central region near the magnetic bead is removed for clarity. For both panels, the circles indicate the initial and final positions of the magnetic bead, which moved from right to left, and are drawn to scale. The scale bar is 10 microns long. The data correspond to Figs. 4 and 5 : ϕ = 0.49 and F max = 0.29 nN. Note that a displacement vector is calculated for every pixel in the raw images; here, only every 6th vector is drawn.

Image of FIG. 5.
FIG. 5.

Rescaled displacement vectors as a function of θ; compare with Eq. (2) . The points are the data and the solid line is the fit to the equation. The data correspond to Figs. 3(b) and 4(a) , using only data with r > r 0 = a MB. For this fit, σ was constrained to be 1/2.

Image of FIG. 6.
FIG. 6.

Young's modulus E as a function of volume fraction ϕ. Due to an inadequately defined applied force, E is overestimated although this affects all points equally (by a multiplicative factor) and does not change the shape of the curve; see the text for a discussion. The inset shows the same data plotted as a function of ϕ c − ϕ with ϕ c = 0.64. The lines in the main plot and the inset are the fit to the data using E = E 0 c − ϕ)−β with E 0 = 0.4 Pa and β = 1.84 ± 0.40. The symbol size indicates the uncertainty.

Image of FIG. 7.
FIG. 7.

Plots of the displacement of the magnetic bead as a function of time, after the force is removed, for ϕ = 0.49. Panel (a) shows a linear-linear plot and panel (b) shows a log-linear plot. The values of F max are given in Table I , with the largest initial displacement (red squares) corresponding to the largest force and the smallest initial displacement (purple pluses) corresponding to the smallest force. In (b), lines are fit to the initial data (t < 0.5 s) indicating decay time constants of 0.47 s, 0.38 s, 0.37 s, 0.31 s, and 0.46 s (from largest F max to smallest).

Image of FIG. 8.
FIG. 8.

Relaxation curves for several experiments demonstrating that the decay is faster for samples with higher ϕ. (a) Comparison of two samples with ϕ as indicated that have nearly the same initial displacement. For the ϕ = 0.44 data, the force is F max = 0.13 nN, and for the ϕ = 0.49 data, the force is F max = 0.29 nN. Two different instances are shown for the ϕ = 0.49 data (triangles and pluses). (b) Comparison of three samples with the same force (F max = 0.29 nN) but different ϕ as indicated.

Image of FIG. 9.
FIG. 9.

Displacement plotted as a function of for (a) ϕ = 0.47 and (b) ϕ = 0.49. The different symbols indicate different values of F max. The values of F max are given in Table I , with the largest initial displacement (red squares) corresponding to the largest force and the smallest initial displacement (purple pluses) corresponding to the smallest force. The straight lines indicate fits to ∼ . For (a), the values of t 0 are 0.50, 0.29, and 0.31 s (top to bottom). For (b), the values of t 0 are 0.23, 0.21, and 0.19 s (top to middle).

Tables

Generic image for table
Table I.

The five different maximum forces applied, and the integrated impulse I = ∫F(t)dt. The calibration procedure (described in the text) has an intrinsic F max uncertainty of ±0.05 nN and an I uncertainty of ±0.005 nN s. Due to variability between different magnetic beads, for a given magnetic bead there is also an overall systematic uncertainty of ±10%. Graphs of F(t) for the three largest values of F max are shown in Fig. 2 .

Loading

Article metrics loading...

/content/aip/journal/jcp/138/12/10.1063/1.4773220
2013-01-07
2014-04-19
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Local elastic response measured near the colloidal glass transition
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/12/10.1063/1.4773220
10.1063/1.4773220
SEARCH_EXPAND_ITEM