Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/138/12/10.1063/1.4790138
1.
1. P. G. Debenedetti and F. H. Stillinger, Nature (London) 410, 259 (2001).
http://dx.doi.org/10.1038/35065704
2.
2. C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and S. W. Martin, J. Appl. Phys. 88, 3113 (2000).
http://dx.doi.org/10.1063/1.1286035
3.
3. M. D. Ediger, Ann. Rev. Phys. Chem. 51, 99 (2000).
http://dx.doi.org/10.1146/annurev.physchem.51.1.99
4.
4. R. Richert, J. Phys.-Condens. Matter 14, R703 (2002).
http://dx.doi.org/10.1088/0953-8984/14/23/201
5.
5. C. Donati, S. C. Glotzer, P. H. Poole, W. Kob, and S. J. Plimpton, Phys. Rev. E 60, 3107 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.3107
6.
6. G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).
http://dx.doi.org/10.1063/1.1696442
7.
7. R. J. Greet and D. Turnbull, J. Chem. Phys. 47, 2185 (1967).
http://dx.doi.org/10.1063/1.1712251
8.
8. R. Richert and C. A. Angell, J. Chem. Phys. 108, 9016 (1998).
http://dx.doi.org/10.1063/1.476348
9.
9. C. M. Roland, S. Capaccioli, M. Lucchesi, and R. Casalini, J. Chem. Phys. 120, 10640 (2004).
http://dx.doi.org/10.1063/1.1739394
10.
10. F. Sciortino, W. Kob, and P. Tartaglia, Phys. Rev. Lett. 83, 3214 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.3214
11.
11. S. Sastry, Nature (London) 409, 164 (2001).
http://dx.doi.org/10.1038/35051524
12.
12. R. J. Speedy, J. Chem. Phys. 110, 4559 (1999).
http://dx.doi.org/10.1063/1.478337
13.
13. R. J. Speedy, J. Chem. Phys. 114, 9069 (2001).
http://dx.doi.org/10.1063/1.1367386
14.
14. L. Angelani and G. Foffi, J. Phys.: Condens. Matter 19, 256207 (2007).
http://dx.doi.org/10.1088/0953-8984/19/25/256207
15.
15. F. W. Starr, S. Sastry, E. La Nave, A. Scala, H. E. Stanley, and F. Sciortino, Phys. Rev. E 63, 041201 (2001).
http://dx.doi.org/10.1103/PhysRevE.63.041201
16.
16. I. Saika-Voivod, F. Sciortino, and P. H. Poole, Phys. Rev. E 69, 041503 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.041503
17.
17. S. Mossa, E. La Nave, H. E. Stanley, C. Donati, F. Sciortino, and P. Tartaglia, Phys. Rev. E 65, 041205 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.041205
18.
18. T. R. Kirkpatrick, D. Thirumalai, and P. G. Wolynes, Phys. Rev. A 40, 1045 (1989).
http://dx.doi.org/10.1103/PhysRevA.40.1045
19.
19. V. Lubchenko and P. G. Wolynes, Ann. Rev. Phys. Chem. 58, 235 (2007).
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104653
20.
20. J.-P. Bouchaud and G. Biroli, J. Chem. Phys. 121, 7347 (2004).
http://dx.doi.org/10.1063/1.1796231
21.
21. C. Donati, J. F. Douglas, W. Kob, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys. Rev. Lett. 80, 2338 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.2338
22.
22. M. Aichele, Y. Gebremichael, F. W. Starr, J. Baschnagel, and S. C. Glotzer, J. Chem. Phys. 119, 5290 (2003).
http://dx.doi.org/10.1063/1.1597473
23.
23. Y. Gebremichael, M. Vogel, and S. Glotzer, J. Chem. Phys. 120, 4415 (2004).
http://dx.doi.org/10.1063/1.1644539
24.
24. R. A. Riggleman, K. Yoshimoto, J. F. Douglas, and J. J. de Pablo, Phys. Rev. Lett. 97, 045502 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.045502
25.
25. M. Vogel, B. Doliwa, A. Heuer, and S. Glotzer, J. Chem. Phys. 120, 4404 (2004).
http://dx.doi.org/10.1063/1.1644538
26.
26. T. Schroder, S. Sastry, J. Dyre, and S. Glotzer, J. Chem. Phys. 112, 9834 (2000).
http://dx.doi.org/10.1063/1.481621
27.
27. N. Giovambattista, F. W. Starr, F. Sciortino, S. V. Buldyrev, and H. E. Stanley, Phys. Rev. E 65, 041502 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.041502
28.
28. A. H. Marcus, J. Schofield, and S. A. Rice, Phys. Rev. E 60, 5725 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.5725
29.
29. Z. Zheng, F. Wang, and Y. Han, Phys. Rev. Lett. 107, 065702 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.065702
30.
30. Z. Zhang, P. J. Yunker, P. Habdas, and A. G. Yodh, Phys. Rev. Lett. 107, 208303 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.208303
31.
31. E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, Science 287, 627 (2000).
http://dx.doi.org/10.1126/science.287.5453.627
32.
32. N. Giovambattista, S. V. Buldyrev, F. W. Starr, and H. E. Stanley, Phys. Rev. Lett. 90, 085506 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.085506
33.
33. Y. Gebremichael, M. Vogel, M. N. J. Bergroth, F. W. Starr, and S. C. Glotzer, J. Phys. Chem. B 109, 15068 (2005).
http://dx.doi.org/10.1021/jp0512412
34.
34. F. W. Starr and J. F. Douglas, Phys. Rev. Lett. 106, 115702 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.115702
35.
35. B. A. Pazmiño, J. F. Douglas, and F. W. Starr, Soft Matter 9, 241 (2013).
http://dx.doi.org/10.1039/c2sm26800k
36.
36. T. R. Kirkpatrick and D. Thirumalai, Phys. Rev. A 37, 4439 (1988).
http://dx.doi.org/10.1103/PhysRevA.37.4439
37.
37. C. Dasgupta, A. V. Indrani, S. Ramaswamy, and M. K. Phani, Europhys. Lett. 15, 307 (1991).
http://dx.doi.org/10.1209/0295-5075/15/3/013
38.
38. S. Franz, C. Donati, G. Parisi, and S. C. Glotzer, Philos. Mag. B 79, 1827 (1999).
http://dx.doi.org/10.1080/13642819908223066
39.
39. N. Lačević, F. W. Starr, T. B. Schrøder, and S. C. Glotzer, J. Chem. Phys. 119, 7372 (2003).
http://dx.doi.org/10.1063/1.1605094
40.
40. L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. E. Masri, D. L'Hôte, F. Ladieu, and M. Pierno, Science 310, 1797 (2005).
http://dx.doi.org/10.1126/science.1120714
41.
41. G. Biroli, J.-P. Bouchaud, K. Miyazaki, and D. R. Reichman, Phys. Rev. Lett. 97, 195701 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.195701
42.
42. S. Karmakar, C. Dasgupta, and S. Sastry, Proc. Natl. Acad. Sci. U.S.A. 106, 3675 (2009).
http://dx.doi.org/10.1073/pnas.0811082106
43.
43. S. Karmakar, C. Dasgupta, and S. Sastry, Phys. Rev. Lett. 105, 015701 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.015701
44.
44. E. Flenner and G. Szamel, Phys. Rev. Lett. 105, 217801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.217801
45.
45. G. S. Grest and K. Kremer, Phys. Rev. A 33, 3628 (1986).
http://dx.doi.org/10.1103/PhysRevA.33.3628
46.
46. J.-L. Barrat, J. Baschnagel, and A. Lyulin, Soft Matter 6, 3430 (2010).
http://dx.doi.org/10.1039/b927044b
47.
47. D. Frenkel and B. Smit, Understanding Molecular Simulation From Algorithms to Applications (Academic, San Diego, CA, 1996).
48.
48. F. W. Starr, S. Sastry, J. F. Douglas, and S. C. Glotzer, Phys. Rev. Lett. 89, 125501 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.125501
49.
49. W. Kob and H. C. Andersen, Phys. Rev. E 51, 4626 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.4626
50.
50. F. Sciortino, P. Gallo, P. Tartaglia, and S.-H. Chen, Phys. Rev. E 54, 6331 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.6331
51.
51. W. Kob, C. Donati, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys. Rev. Lett. 79, 2827 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.2827
52.
52. Y. Gebremichael, T. B. Schrøder, F. W. Starr, and S. C. Glotzer, Phys. Rev. E 64, 051503 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.051503
53.
53. D. Thirumalai and R. D. Mountain, Phys. Rev. E 47, 479 (1993).
http://dx.doi.org/10.1103/PhysRevE.47.479
54.
54. K. Vollmayr-Lee and A. Zippelius, Phys. Rev. E 72, 041507 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.041507
55.
55. K. Vollmayr-Lee, W. Kob, K. Binder, and A. Zippelius, J. Chem. Phys. 116, 5158 (2002).
http://dx.doi.org/10.1063/1.1453962
56.
56. M. Dzugutov, S. I. Simdyankin, and F. H. M. Zetterling, Phys. Rev. Lett. 89, 195701 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.195701
57.
57. H. Tanaka, J. Non-Cryst. Solids 351, 3385 (2005).
http://dx.doi.org/10.1016/j.jnoncrysol.2005.09.009
58.
58. H. Tanaka, T. Kawasaki, H. Shintani, and K. Watanabe, Nat. Mater. 9, 324 (2010).
http://dx.doi.org/10.1038/nmat2634
59.
59. J. C. Conrad, P. P. Dhillon, E. R. Weeks, D. R. Reichman, and D. A. Weitz, Phys. Rev. Lett. 97, 265701 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.265701
60.
60. A. V. Anikeenko and N. N. Medvedev, Phys. Rev. Lett. 98, 235504 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.235504
61.
61. U. R. Pedersen, T. B. Schrøder, J. C. Dyre, and P. Harrowell, Phys. Rev. Lett. 104, 105701 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.105701
62.
62. D. Stauffer and A. Aharony, Introduction To Percolation Theory (Taylor and Francis, London, 1998).
63.
63. D. S. Gaunt, M. F. Sykes, G. M. Torrie, and S. G. Whittington, J. Phys. A 15, 3209 (1982).
http://dx.doi.org/10.1088/0305-4470/15/10/025
64.
64. E. J. J. van Rensburg and N. Madras, J. Phys. A 30, 8035 (1997).
http://dx.doi.org/10.1088/0305-4470/30/23/007
65.
65. H.-K. Janssen and O. Stenull, Phys. Rev. E 85, 051126 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.051126
66.
66. N. Jan and D. Stauffer, Int. J. Mod. Phys. C 09, 341 (1998).
http://dx.doi.org/10.1142/S0129183198000261
67.
67. N. Giovambattista, S. V. Buldyrev, F. W. Starr, and H. E. Stanley, Phys. Rev. E 72, 011202 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.011202
68.
68. H. E. Castillo, C. Chamon, L. F. Cugliandolo, J. L. Iguain, and M. P. Kennett, Phys. Rev. B 68, 134442 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.134442
69.
69. J. F. Douglas, Phys. Rev. E 54, 2677 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.2677
70.
70. J.-S. Wang and D. Stauffer, Z. Phys. B: Condens. Matter 78, 145 (1990).
http://dx.doi.org/10.1007/BF01317367
71.
71. G. Paul, R. M. Ziff, and H. E. Stanley, Phys. Rev. E 64, 026115 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.026115
72.
72. F. Family, T. Vicsek, and P. Meakin, Phys. Rev. Lett. 55, 641 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.641
73.
73. J. F. Douglas, J. Dudowicz, and K. F. Freed, J. Chem. Phys. 125, 144907 (2006).
http://dx.doi.org/10.1063/1.2356863
74.
74. K. F. Freed, Renormalization Group Theory of Macromolecules (Wiley-Interscience, New York, 1987).
75.
75. J. P. Wittmer, A. Milchev, and M. E. Cates, J. Chem. Phys. 109, 834 (1998).
http://dx.doi.org/10.1063/1.476623
76.
76. J. D. Stevenson, J. Schmalian, and P. G. Wolynes, Nat. Phys. 2, 268 (2006).
http://dx.doi.org/10.1038/nphys261
77.
77. J. F. Kincaid, H. Eyring, and A. E. Stearn, Chem. Rev. 28, 301 (1941).
http://dx.doi.org/10.1021/cr60090a005
78.
78. R. M. Barrer, Trans. Faraday Soc. 39, 48 (1943).
http://dx.doi.org/10.1039/tf9433900048
79.
79. L. Qun-Fang, H. Yu-Chun, and L. Rui-Sen, Fluid Phase Equilib. 140, 221 (1997).
http://dx.doi.org/10.1016/S0378-3812(97)00176-3
80.
80. C. Cammarota, A. Cavagna, G. Gradenigo, T. S. Grigera, and P. Verrocchio, J. Chem. Phys. 131, 194901 (2009).
http://dx.doi.org/10.1063/1.3257739
81.
81. T. Das, S. Sengupta, and M. Rao, Phys. Rev. E 82, 041115 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.041115
82.
82. H. Zhang, M. Khalkhali, Q. Liu, and J. F. Douglas, J. Chem. Phys. 138, 12A538 (2013).
http://dx.doi.org/10.1063/1.4769267
83.
83. D. S. Fisher and D. A. Huse, Phys. Rev. B 38, 386 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.386
84.
84. S. Capaccioli, G. Ruocco, and F. Zamponi, J. Phys. Chem. B 112, 10652 (2008).
http://dx.doi.org/10.1021/jp802097u
85.
85. S. Sengupta, S. Karmakar, C. Dasgupta, and S. Sastry, Phys. Rev. Lett. 109, 095705 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.095705
86.
86. W. L. McMillan, Phys. Rev. B 30, 476 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.476
87.
87. A. J. Bray and M. A. Moore, J. Phys. C: Solid State Phys. 17, L463 (1984).
http://dx.doi.org/10.1088/0022-3719/17/18/004
88.
88. S. Sengupta, S. Karmakar, C. Dasgupta, and S. Sastry, “Breakdown of the Stokes-Einstein relation in two, three, and four dimensions,” J. Chem. Phys. (this special topic issue).
http://dx.doi.org/10.1063/1.4792356
89.
89. A. P. Sokolov and K. S. Schweizer, Phys. Rev. Lett. 102, 248301 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.248301
90.
90. F. Vargas Lara and F. W. Starr, Soft Matter 7, 2085 (2011).
http://dx.doi.org/10.1039/c0sm00989j
91.
91. S. Karmakar and I. Procaccia, Phys. Rev. E 86, 061502 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.061502
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/12/10.1063/1.4790138
Loading
/content/aip/journal/jcp/138/12/10.1063/1.4790138
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/12/10.1063/1.4790138
2013-02-25
2016-02-10

Abstract

We carefully examine common measures of dynamical heterogeneity for a model polymer melt and test how these scales compare with those hypothesized by the Adam and Gibbs (AG) and random first-order transition (RFOT) theories of relaxation in glass-forming liquids. To this end, we first analyze clusters of highly mobile particles, the string-like collective motion of these mobile particles, and clusters of relative low mobility. We show that the time scale of the high-mobility clusters and strings is associated with a diffusive time scale, while the low-mobility particles' time scale relates to a structural relaxation time. The difference of the characteristic times for the high- and low-mobility particles naturally explains the well-known decoupling of diffusion and structural relaxation time scales. Despite the inherent difference of dynamics between high- and low-mobility particles, we find a high degree of similarity in the geometrical structure of these particle clusters. In particular, we show that the fractal dimensions of these clusters are consistent with those of swollen branched polymers or branched polymers with screened excluded-volume interactions, corresponding to lattice animals and percolation clusters, respectively. In contrast, the fractal dimension of the strings crosses over from that of self-avoiding walks for small strings, to simple random walks for longer, more strongly interacting, strings, corresponding to flexible polymers with screened excluded-volume interactions. We examine the appropriateness of identifying the size scales of either mobile particle clusters or strings with the size of cooperatively rearranging regions (CRR) in the AG and RFOT theories. We find that the string size appears to be the most consistent measure of CRR for both the AG and RFOT models. Identifying strings or clusters with the “mosaic” length of the RFOT model relaxes the conventional assumption that the “entropic droplets” are compact. We also confirm the validity of the entropy formulation of the AG theory, constraining the exponent values of the RFOT theory. This constraint, together with the analysis of size scales, enables us to estimate the characteristic exponents of RFOT.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/12/1.4790138.html;jsessionid=ty7dm9yqxroq.x-aip-live-03?itemId=/content/aip/journal/jcp/138/12/10.1063/1.4790138&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd