Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/138/12/10.1063/1.4790515
1.
1. L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.587
2.
2. W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Oxford University Press, Oxford, 2008).
3.
3. M. M. Hurley and P. Harrowell, Phys. Rev. E 52, 1694 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.1694
4.
4. M. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).
http://dx.doi.org/10.1146/annurev.physchem.51.1.99
5.
5. L. Berthier, G. Biroli, J. P. Bouchaud, L. Cipelletti, and W. Van Saarloos, Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (Oxford University Press, Oxford, 2011).
6.
6. F. C. Frank, Proc. R. Soc. London, Ser. A 215, 43 (1952).
http://dx.doi.org/10.1098/rspa.1952.0194
7.
7. H. Shintani and H. Tanaka, Nat. Phys. 2, 200 (2006).
http://dx.doi.org/10.1038/nphys235
8.
8. H. Tanaka, T. Kawasaki, H. Shintani, and K. Watanabe, Nature Mater. 9, 324 (2010).
http://dx.doi.org/10.1038/nmat2634
9.
9. F. Sausset and G. Tarjus, Phys. Rev. Lett. 104, 065701 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.065701
10.
10. M. Leocmach and H. Tanaka, Nat. Comm. 3, 974 (2012).
http://dx.doi.org/10.1038/ncomms1974
11.
11. H. Jónsson and H. Andersen, Phys. Rev. Lett. 60, 2295 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.2295
12.
12. T. Kondo and K. Tsumuraya, J. Chem. Phys. 94, 8220 (1991).
http://dx.doi.org/10.1063/1.460106
13.
13. T. Tomida and T. Egami, Phys. Rev. B 52, 3290 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.3290
14.
14. R. Jullien, P. Jund, D. Caprion, and D. Quitmann, Phys. Rev. E 54, 6035 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.6035
15.
15. M. Dzugutov, S. I. Simdyankin, and F. H. M. Zetterling, Phys. Rev. Lett. 89, 195701 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.195701
16.
16. E. Lerner, I. Procaccia, and J. Zylberg, Phys. Rev. Lett. 102, 125701 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.125701
17.
17. U. R. Pedersen, T. B. Schrøder, J. C. Dyre, and P. Harrowell, Phys. Rev. Lett. 104, 105701 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.105701
18.
18. D. Coslovich, Phys. Rev. E 83, 051505 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.051505
19.
19. G. Tarjus, S. A. Kivelson, Z. Nussinov, and P. Viot, J. Phys.: Condens. Matter 17, R1143 (2005).
http://dx.doi.org/10.1088/0953-8984/17/50/R01
20.
20. T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, and D. M. Herlach, Phys. Rev. Lett. 89, 075507 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.075507
21.
21. D. B. Miracle, Nature Mater. 3, 697 (2004).
http://dx.doi.org/10.1038/nmat1219
22.
22. G. Biroli, J. P. Bouchaud, A. Cavagna, T. S. Grigera, and P. Verrochio, Nat. Phys. 4, 771 (2008).
http://dx.doi.org/10.1038/nphys1050
23.
23. M. Mosayebi, E. Del Gado, P. Ilg, and H. C. Öttinger, Phys. Rev. Lett. 104, 205704 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.205704
24.
24. F. Sausset and D. Levine, Phys. Rev. Lett. 107, 045501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.045501
25.
25. W. Kob, S. Roldán-Vargas, and L. Berthier, Nat. Phys. 8, 164 (2011).
http://dx.doi.org/10.1038/nphys2133
26.
26. C. Cammarota and G. Biroli, Europhys. Lett. 98, 36005 (2012).
http://dx.doi.org/10.1209/0295-5075/98/36005
27.
27. G. M. Hocky, T. E. Markland, and D. R. Reichman, Phys. Rev. Lett. 108, 225506 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.225506
28.
28. A. J. Dunleavy, K. Wiesner, and C. P. Royall, Phys. Rev. E 86, 041505 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.041505
29.
29. B. Charbonneau, P. Charbonneau, and G. Tarjus, Phys. Rev. Lett. 108, 035701 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.035701
30.
30. S. Karmakar and I. Procaccia, e-print arXiv:1204.6634 (2012).
31.
31. A. Widmer-Cooper and P. Harrowell, Phys. Rev. Lett. 96, 185701 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.185701
32.
32. M. Mosayebi, E. Del Gado, P. Ilg, and H. C. Öttinger, J. Chem. Phys. 137, 024504 (2012).
http://dx.doi.org/10.1063/1.4732859
33.
33. M. Dzugutov, Phys. Rev. Lett. 70, 2924 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.2924
34.
34. G. Wahnström, Phys. Rev. A 44, 3752 (1991).
http://dx.doi.org/10.1103/PhysRevA.44.3752
35.
35. S. D. Stoddard and J. Ford, Phys. Rev. A 8, 1504 (1973).
http://dx.doi.org/10.1103/PhysRevA.8.1504
36.
36. S. Nose, J. Phys. Soc. Jpn. 70, 75 (2001).
http://dx.doi.org/10.1143/JPSJ.70.75
37.
37. J. P. K. Doye and L. Meyer, Phys. Rev. Lett. 95, 063401 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.063401
38.
38. S. R. Williams, e-print arXiv:0705.0203 (2007).
39.
39. C. P. Royall, S. R. Williams, T. Ohtsuka, and H. Tanaka, Nature Mater. 7, 556 (2008).
http://dx.doi.org/10.1038/nmat2219
40.
40. S. Mossa and G. Tarjus, J. Chem. Phys. 119, 8069 (2003).
http://dx.doi.org/10.1063/1.1604380
41.
41. A. Malins, Ph.D. dissertation, University of Bristol, 2013.
42.
42. J. P. K. Doye, D. J. Wales, and R. S. Berry, J. Chem. Phys. 103, 4234 (1995).
http://dx.doi.org/10.1063/1.470729
43.
43. D. J. Wales and J. P. K. Doye, J. Phys. Chem. A 101, 5111 (1997).
http://dx.doi.org/10.1021/jp970984n
44.
44.See http://www-wales.ch.cam.ac.uk/GMIN/ for “GMIN: A program for finding global minima and calculating thermodynamic properties from basin-sampling.”
45.
45.See http://www-wales.ch.cam.ac.uk/CCD.html for “The Cambridge Cluster Database.”
46.
46. C. Cammarota and G. Biroli, Proc. Natl. Acad. Sci. U.S.A. 109, 8850 (2012).
http://dx.doi.org/10.1073/pnas.1111582109
47.
47. N. Lačević, F. W. Starr, T. B. Schrøder, and S. C. Glotzer, J. Chem. Phys. 119, 7372 (2003).
http://dx.doi.org/10.1063/1.1605094
48.
48. S. Karmakar, C. Dasgupta, and S. Sastry, Proc. Natl. Acad. Sci. U.S.A. 106, 3675 (2009).
http://dx.doi.org/10.1073/pnas.0811082106
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/12/10.1063/1.4790515
Loading
/content/aip/journal/jcp/138/12/10.1063/1.4790515
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/12/10.1063/1.4790515
2013-02-14
2016-02-12

Abstract

We study the relationship between local structural ordering and dynamical heterogeneities in a model glass-forming liquid, the Wahnström mixture. A novel cluster-based approach is used to detect local energy minimum polyhedral clusters and local crystalline environments. A structure-specific time correlation function is then devised to determine their temporal stability. For our system, the lifetime correlation function for icosahedral clusters decays far slower than for those of similarly sized but topologically distinct clusters. Upon cooling, the icosahedra form domains of increasing size and their lifetime increases with the size of the domains. Furthermore, these long-lived domains lower the mobility of neighboring particles. These structured domains show correlations with the slow regions of the dynamical heterogeneities that form on cooling towards the glass transition. Although icosahedral clusters with a particular composition and arrangement of large and small particles are structural elements of the crystal, we find that most icosahedral clusters lack such order in composition and arrangement and thus local crystalline ordering makes only a limited contribution to this process. Finally, we characterize the spatial correlation of the domains of icosahedra by two structural correlation lengths and compare them with the four-point dynamic correlation length. All the length scales increase upon cooling, but in different ways.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/12/1.4790515.html;jsessionid=2l98v65h1ufgk.x-aip-live-02?itemId=/content/aip/journal/jcp/138/12/10.1063/1.4790515&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd