Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/138/12/10.1063/1.4792356
1.
1. J. Hansen and I. R. McDonald, Theory of Simple Liquids, 3rd ed. (Elsevier, 2008).
2.
2. A. Einstein, Ann. Phys. 322, 549 (1905);
http://dx.doi.org/10.1002/andp.19053220806
2.A. Einstein, Ann. Phys. (Leipzig) 14(Supplement), 182 (2005)
http://dx.doi.org/10.1002/andp.200590005
2.A. Einstein [Investigations on the Theory of the Brownian Movement (Dover, New York, 1956) (in English)].
3.
3. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Pergamon, 1987).
4.
4. J. A. Hodgdon and F. H. Stillinger, Phys. Rev. E 48, 207 (1993);
http://dx.doi.org/10.1103/PhysRevE.48.207
4.F. H. Stillinger and J. A. Hodgdon, Phys. Rev. E 50, 2064 (1994).
http://dx.doi.org/10.1103/PhysRevE.50.2064
5.
5. G. L. Pollack, Phys. Rev. A 23, 2660 (1981).
http://dx.doi.org/10.1103/PhysRevA.23.2660
6.
6. F. Fujara, B. Geil, H. Sillescu, and G. Fleischer, Z. Phys. B 88, 195 (1992);
http://dx.doi.org/10.1007/BF01323572
6.I. Chang, F. Fujara, B. Geil, G. Heuberger, T. Mangel, and H. Silescu, J. Non-Cryst. Solids 172–174, 248 (1994).
http://dx.doi.org/10.1016/0022-3093(94)90443-X
7.
7. I. Chang and H. Silescu, J. Phys. Chem. B 101, 8794 (1997).
http://dx.doi.org/10.1021/jp9640989
8.
8. G. Heuberger and H. Sillescu, J. Phys. Chem. 100, 15255 (1996).
http://dx.doi.org/10.1021/jp960968a
9.
9. M. T. Cicerone and M. D. Ediger, J. Chem. Phys. 104, 7210 (1996);
http://dx.doi.org/10.1063/1.471433
9.M. T. Cicerone, F. R. Blackburn, and M. D. Ediger, J. Chem. Phys. 102, 471 (1995).
http://dx.doi.org/10.1063/1.469425
10.
10. F. R. Blackburn, C. Yang, and M. D. Ediger, J. Phys. Chem. 100, 18249 (1996).
http://dx.doi.org/10.1021/jp9622041
11.
11. M. K. Mapes, S. F. Swallen, K. L. Kearns, and M. D. Ediger, J. Chem. Phys. 124, 054710 (2006).
http://dx.doi.org/10.1063/1.2139089
12.
12. S. F. Swallen and M. D. Ediger, Soft Matter 7, 10339 (2011).
http://dx.doi.org/10.1039/c1sm06283b
13.
13. S. F. Swallen, K. Traynor, R. J. McMahon, M. D. Ediger, and T. E. Mates, J. Phys. Chem. B 113, 4600 (2009).
http://dx.doi.org/10.1021/jp808912e
14.
14. S. F. Swallen, P. A. Bonvallet, R. J. McMahon, and M. D. Ediger, Phys. Rev. Lett. 90, 015901 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.015901
15.
15. E. Rössler, Phys. Rev. Lett. 65, 1595 (1990);
http://dx.doi.org/10.1103/PhysRevLett.65.1595
15.E. Rössler and P. Eiermann, J. Chem. Phys. 100, 5237 (1994).
http://dx.doi.org/10.1063/1.467188
16.
16. S. S. Ashwin, Ph.D. dissertation, Jawaharlal Nehru Centre for Advanced Scientific Research (2005).
17.
17. W. Kob and H. C. Andersen, Phys. Rev. Lett. 73, 1376 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.1376
18.
18. G. Tarjus and D. Kivelson, J. Chem. Phys. 103, 3071 (1995).
http://dx.doi.org/10.1063/1.470495
19.
19. G. Monaco, D. Fioretto, L. Comez, and G. Ruocco, Phys. Rev. E 63, 061502 (2001).
http://dx.doi.org/10.1103/PhysRevE.63.061502
20.
20. K. Ngai, J. Magill, and D. Plazek, J. Chem. Phys. 112, 1887 (2000).
http://dx.doi.org/10.1063/1.480752
21.
21. C. Hansen, F. Stickel, T. Berger, R. Richert, and E. W. Fischer, J. Chem. Phys. 107, 1086 (1997).
http://dx.doi.org/10.1063/1.474456
22.
22. L. Liu, S. Chen, A. Faraone, C. Yen, and C. Mou, Phys. Rev. Lett. 95, 117802 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.117802
23.
23. S. Chen, F. Mallamace, C. Mou, M. Broccio, C. Corsaro, A. Faraone, and L. Liu, Proc. Natl. Acad. Sci. U.S.A. 103, 12974 (2006).
http://dx.doi.org/10.1073/pnas.0603253103
24.
24. S. Becker, P. Poole, and F. Starr, Phys. Rev. Lett. 97, 055901 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.055901
25.
25. F. Fernandez-Alonso, F. J. Bermejo, S. E. McLain, J. F. C. Turner, J. J. Molaison, and K. W. Herwig, Phys. Rev. Lett. 98, 077801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.077801
26.
26. F. Mallamace, C. Branca, C. Corsaro, N. Leone, J. Spooren, H. Stanley, and S. Chen, J. Phys. Chem. B 114, 1870 (2010).
http://dx.doi.org/10.1021/jp910038j
27.
27. L. Xu, F. Mallamace, Z. Yan, F. Starr, S. Buldyrev, and H. Stanley, Nat. Phys. 5, 565 (2009).
http://dx.doi.org/10.1038/nphys1328
28.
28. M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).
http://dx.doi.org/10.1146/annurev.physchem.51.1.99
29.
29. C. De Michele and D. Leporini, Phys. Rev. E 63, 036701 (2001).
http://dx.doi.org/10.1103/PhysRevE.63.036701
30.
30. P. Bordat, F. Affouard, M. Descamps, and F. Muller-Plathe, J. Phys.: Condens. Matter 15, 5397 (2003).
http://dx.doi.org/10.1088/0953-8984/15/32/301
31.
31. F. Affouard, M. Descamps, L.-C. Valdes, J. Habasaki, P. Bordat, and K. L. Ngai, J. Chem. Phys. 131, 104510 (2009).
http://dx.doi.org/10.1063/1.3204063
32.
32. X. J. Han and H. R. Schober, Phys. Rev. B 83, 224201 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.224201
33.
33. S. Sastry, P. G. Debenedetti and F. H. Stillinger, Nature (London) 393, 554 (1998).
http://dx.doi.org/10.1038/31189
34.
34. S. Sastry, PhysChemComm 3, 79 (2000).
http://dx.doi.org/10.1039/b008749l
35.
35. S. Sastry, P. Debenedetti, F. Stillinger, T. Schroder, J. Dyre, and S. Glotzer, Physica A 270, 301 (1999).
http://dx.doi.org/10.1016/S0378-4371(99)00259-9
36.
36. T. R. Kirkpatrick and D. Thirumalai, Phys. Rev. A 37, 4439 (1988).
http://dx.doi.org/10.1103/PhysRevA.37.4439
37.
37. C. Dasgupta, A. V. Indrani, S. Ramaswamy, and M. K. Phani, Europhys. Lett. 15, 307 (1991).
http://dx.doi.org/10.1209/0295-5075/15/3/013
38.
38. S. C. Glotzer, V. N. Novikov, and T. B. Schrøder, J. Chem. Phys. 112, 509 (2000).
http://dx.doi.org/10.1063/1.480541
39.
39. C. Donati, S. Franz, S. C. Glotze, and G. Parisi, J. Non-Cryst. Solids 307, 215224 (2002).
http://dx.doi.org/10.1016/S0022-3093(02)01461-8
40.
40. S. Karmakar, C. Dasgupta, and S. Sastry, Proc. Natl. Acad. Sci. U.S.A. 106, 3675 (2009).
http://dx.doi.org/10.1073/pnas.0811082106
41.
41. L. Berthier, G. Biroli, J.-P. Bouchaud, and R. L. Jack, in Dynamical Heterogeneities in Glasses, Colloids, and Granular Media, edited by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos (Oxford University Press, 2011); e-print arXiv:1009.4765v2 [cond-mat.stat-mech].
42.
42. R. D. Mountain and D. Thirumalai, Phys. Rev. A 45, R3380 (1992).
http://dx.doi.org/10.1103/PhysRevA.45.R3380
43.
43. D. Thirumalai and R. D. Mountain, Phys. Rev. E 47, 479 (1993).
http://dx.doi.org/10.1103/PhysRevE.47.479
44.
44. Y. Jung I, J. P. Garrahan, and D. Chandler, Phys. Rev. E 69, 061205 (2004);
http://dx.doi.org/10.1103/PhysRevE.69.061205
44.Y. Jung I, J. P. Garrahan, and D. Chandler, J. Chem. Phys. 123, 084509 (2005).
http://dx.doi.org/10.1063/1.2001629
45.
45. X. Xia and P. G. Wolynes, J. Phys. Chem. B 105, 6570 (2001).
http://dx.doi.org/10.1021/jp004616m
46.
46. X. Xia and P. G. Wolynes, Phys. Rev. Lett. 86, 5526 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.5526
47.
47. V. Lubchemko and P. G. Wolynes, Ann. Rev. Phys. Chem. 58, 235 (2007).
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104653
48.
48. G. Biroli and J. P. Bouchaud, J. Phys.: Condens. Mattter 19, 205101 (2007).
http://dx.doi.org/10.1088/0953-8984/19/20/205101
49.
49. J. S. Langer, “Shear-transformation-zone theory of glassy diffusion, stretched exponentials, and the Stokes-Einstein relation,” e-print arXiv:1108.2738v2 [cond-mat.stat-mech].
50.
50. J. F. Douglas and D. Leporini, J. Non-Cryst. Solids 235, 137 (1998).
http://dx.doi.org/10.1016/S0022-3093(98)00501-8
51.
51. E. La Nave, S. Sastry, and F. Sciortino, Phys. Rev. E 74, 050501R (2006).
http://dx.doi.org/10.1103/PhysRevE.74.050501
52.
52. W. Kob and H. C. Andersen, Phys. Rev. E 51, 4626 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.4626
53.
53. F. Alvarez, A. Alegria, and J. Colmenero, Phys. Rev. B 44, 7306 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.7306
54.
54. S.-H. Chong and W. Kob, Phys. Rev. Lett. 102, 025702 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.025702
55.
55. S. Kumar, G. Szamel, and J. Douglas, J. Chem. Phys. 124, 214501 (2006).
http://dx.doi.org/10.1063/1.2192769
56.
56. R. Böhmer, K. L. Ngai, C. A. Angell, and D. J. Plazek, J. Chem. Phys. 99, 4201 (1993).
http://dx.doi.org/10.1063/1.466117
57.
57. K. Niss, C. Dalle-Ferrier, G. Tarjus, and C. Alba-Simionesco, J. Phys.: Condens. Matt. 19, 076102 (2007);
http://dx.doi.org/10.1088/0953-8984/19/7/076102
57.e-print arXiv:cond-mat/0611253v1 [cond-mat.soft].
58.
58. A. Heuer, J. Phys.: Condens. Matter 20, 373101 (2008).
http://dx.doi.org/10.1088/0953-8984/20/37/373101
59.
59. J. C. Dyre, J. Phys.: Condens. Matter 19, 205105 (2007).
http://dx.doi.org/10.1088/0953-8984/19/20/205105
60.
60. V. V. Vasisht and S. SastryStokes-Einstein breakdown in supercooled liquid silicon” (unpublished).
61.
61. M. H. Ernst, E. H. Hauge, and J. M. J. Van Leeuwen, Phys. Rev. Lett. 25, 1254 (1970).
http://dx.doi.org/10.1103/PhysRevLett.25.1254
62.
62. J. R. Dorfman and E. G. D. Cohen, Phys. Rev. Lett. 25, 1257 (1970).
http://dx.doi.org/10.1103/PhysRevLett.25.1257
63.
63. J. F. Douglas, Comp. Mater. Sci. 4, 292 (1995).
http://dx.doi.org/10.1016/0927-0256(95)00031-0
64.
64. B. Liu and J. Goree, Phys. Rev. Lett. 94, 185002 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.185002
65.
65. B. Liu, J. Goree, and O. S. Vaulina, Phys. Rev. Lett. 96, 015005 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.015005
66.
66. D. Gravina, G. Ciccotti, and B. L. Holian, Phys. Rev. E 52, 6123 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.6123
67.
67. W. G. Hoover and H. A. Posch, Phys. Rev. E 51, 273 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.273
68.
68. R. Bruning, D. St-Onge, S. Patterson, and W. Kob, J. Phys.: Condens. Matter 21, 035117 (2009).
http://dx.doi.org/10.1088/0953-8984/21/3/035117
69.
69. S. Karmakar, A. Lemaitre, E. Lerner, and I. Procaccia, Phys. Rev. Lett. 104, 215502 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.215502
70.
70. D. Brown and J. H. R. Clarke, Mol. Phys. 51, 1243 (1984).
http://dx.doi.org/10.1080/00268978400100801
71.
71. N. Lačević, F. W. Starr, T. B. Schrøder, and S. C. Glotzer, J. Chem. Phys. 119, 7372 (2003).
http://dx.doi.org/10.1063/1.1605094
72.
72. S. Sengupta, F. Vasconcelos, F. Affouard, and S. Sastry, J. Chem. Phys. 135, 194503 (2011).
http://dx.doi.org/10.1063/1.3660201
73.
73. S. Sengupta, S. Karmakar, C. Dasgupta, and S. Sastry, Phys. Rev. Lett. 109, 095705 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.095705
74.
74. S. Sastry, Nature (London) 409, 164 (2001).
http://dx.doi.org/10.1038/35051524
75.
75. F. Mezei, W. Knaak, and B. Farago, Phys. Rev. Lett. 58, 571 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.571
76.
76. R. Yamamoto and A. Onuki, Phys. Rev. Lett. 81, 4915 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.4915
77.
77. J. D. Eaves and D. R. Reichmann, Proc. Natl. Acad. Sci. U.S.A. 106, 15171 (2009).
http://dx.doi.org/10.1073/pnas.0902888106
78.
78. P. Charbonneau, A. Ikeda, J. A. van Meel, and K. Miyazaki, Phys. Rev. E 81, 040501R (2010).
http://dx.doi.org/10.1103/PhysRevE.81.040501
79.
79. D. N. Perera and P. Harrowell, Phys. Rev. Lett. 81, 120 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.120
80.
80. F. W. Starr, J. F. Douglas, and S. Sastry, J. Chem. Phys. 138, 12A541 (2013).
http://dx.doi.org/10.1063/1.4790138
81.
81.In order to obtain estimates of βKWW, we fit the functions Fs(k, t) to the 4-parameter form with 0 ⩽ βKWW ⩽ 1. Here, fc, τs, τα, βKWW are the fit parameters. The short-time decay is assumed to be Gaussian (n = 2) except at low temperatures in 2D models where an exponential (n = 1) short-time decay is found to be a better fit.
82.
82. P. Charbonneau, G. Parisi, and F. Zamponi, “Stokes-Einstein relation violation and the upper critical dimension of the glass transition,” e-print arXiv:1210.6073.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/12/10.1063/1.4792356
Loading
/content/aip/journal/jcp/138/12/10.1063/1.4792356
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/12/10.1063/1.4792356
2013-03-14
2016-02-13

Abstract

The breakdown of the Stokes-Einstein (SE) relation between diffusivity and viscosity at low temperatures is considered to be one of the hallmarks of glassy dynamics in liquids. Theoretical analyses relate this breakdown with the presence of heterogeneous dynamics, and by extension, with the fragility of glass formers. We perform an investigation of the breakdown of the SE relation in 2, 3, and 4 dimensions in order to understand these interrelations. Results from simulations of model glass formers show that the degree of the breakdown of the SE relation decreases with increasing spatial dimensionality. The breakdown itself can be rationalized via the difference between the activation free energies for diffusivity and viscosity (or relaxation times) in the Adam-Gibbs relation in three and four dimensions. The behavior in two dimensions also can be understood in terms of a generalized Adam-Gibbs relation that is observed in previous work. We calculate various measures of heterogeneity of dynamics and find that the degree of the SE breakdown and measures of heterogeneity of dynamics are generally well correlated but with some exceptions. The two-dimensional systems we study show deviations from the pattern of behavior of the three- and four-dimensional systems both at high and low temperatures. The fragility of the studied liquids is found to increase with spatial dimensionality, contrary to the expectation based on the association of fragility with heterogeneous dynamics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/12/1.4792356.html;jsessionid=3oqk79f6p103s.x-aip-live-06?itemId=/content/aip/journal/jcp/138/12/10.1063/1.4792356&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd