1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
1H relaxation dispersion in solutions of nitroxide radicals: Influence of electron spin relaxation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/12/10.1063/1.4795006
1.
1. P. P. Borbat, H. S. Mchaourab, and J. H. Freed, J. Am. Chem. Soc. 124, 5304 (2002).
http://dx.doi.org/10.1021/ja020040y
2.
2. J. H. Freed, in Spin Labeling: Theory and Applications (Academic, New York, 1976), p. 53.
3.
3. Y. Hovav, A. Feintuch, and S. Vega, J. Chem. Phys. 134, 074509 (2011).
http://dx.doi.org/10.1063/1.3526486
4.
4. P. Höfer, G. Parigi, C. Luchinat, P. Carl, G. Guthausen, M. Reese, T. Carlomango, C. Griesenger, and M. Bennati, J. Am. Chem. Soc. 130, 3254 (2008).
http://dx.doi.org/10.1021/ja0783207
5.
5. J. Kowalewski, D. Kruk, and G. Parigi, Adv. Inorg. Chem. 57, 41 (2005).
http://dx.doi.org/10.1016/S0898-8838(05)57002-8
6.
6. I. Bertini, C. Luchinat, and G. Parigi, Solution NMR of Paramagnetic Molecules (Elsevier, Amsterdam, 2001).
7.
7. C. F. Polnaszek and R. G. Bryant, J. Chem. Phys. 81, 4038 (1984).
http://dx.doi.org/10.1063/1.448147
8.
8. C. F. Polnaszek and R. G. Bryant, J. Am. Chem. Soc. 106, 428 (1984).
http://dx.doi.org/10.1021/ja00314a032
9.
9. R. Kimmich and E. Anoardo, Prog. Nucl. Magn. Reson. Spectrosc. 44, 257 (2004).
http://dx.doi.org/10.1016/j.pnmrs.2004.03.002
10.
10. L. P. Hwang and J. H. Freed, J. Chem. Phys. 63, 4017 (1975).
http://dx.doi.org/10.1063/1.431841
11.
11. Y. Ayant, E. Belorizky, J. Alizon, and J. Gallice, J. Phys. (Paris) 36, 991 (1975).
http://dx.doi.org/10.1051/jphys:019750036010099100
12.
12. A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961).
13.
13. C. P. Slichter, Principles of Magnetic Resonance (Springer-Verlag, Berlin, 1990).
14.
14. D. Kruk, Theory of Evolution and Relaxation of Multi-Spin Systems (Arima, Bury St Edmunds, 2007).
15.
15. J. Kowalewski and L. Mäler, Nuclear Spin Relaxation in Liquids: Theory, Experiments, and Applications (Taylor & Francis, New York, 2006).
16.
16. J. F. Harmon, Chem. Phys. Lett. 7, 207 (1970).
http://dx.doi.org/10.1016/0009-2614(70)80289-5
17.
17. P. H. Fries, Mol. Phys. 48, 503 (1983).
http://dx.doi.org/10.1080/00268978300100361
18.
18. C. A. Sholl, J. Phys. C 14, 447 (1981).
http://dx.doi.org/10.1088/0022-3719/14/4/018
19.
19. P. H. Fries and E. Belorizky, J. Phys. (Paris) 39, 1263 (1978).
http://dx.doi.org/10.1051/jphys:0197800390120126300
20.
20. E. Belorizky and P. H. Fries, Chem. Phys. Lett. 145, 1 (1988).
http://dx.doi.org/10.1016/0009-2614(88)85123-6
21.
21. D. Kruk, R. Meier, and E. A. Rössler, Phys. Rev. E 85, 020201R (2012).
http://dx.doi.org/10.1103/PhysRevE.85.020201
22.
22. T. Nilsson and J. Kowalewski, J. Magn. Reson. 146, 345 (2000).
http://dx.doi.org/10.1006/jmre.2000.2125
23.
23. D. Kruk and J. Kowalewski, J. Chem. Phys. 130, 174104 (2009).
http://dx.doi.org/10.1063/1.3119635
24.
24. D. Kruk and J. Kowalewski, Mol. Phys. 101, 2861 (2003).
http://dx.doi.org/10.1080/00268970310001605723
25.
25. E. Belorizky, P. H. Fries, L. Helm, J. Kowalewski, D. Kruk, R. R. Sharp, and P.-O , Westlund, J. Chem. Phys. 128, 052315 (2008).
http://dx.doi.org/10.1063/1.2833957
26.
26. E. Belorizky, D. G. Gillies, W. Gorecki, K. Lang, F. Noack, C. Roux, J. Struppe, L. H. Sutcliffe, J. P. Travers, and X. Wu, J. Phys. Chem. A 102, 3674 (1998).
http://dx.doi.org/10.1021/jp980397h
27.
27. D. Kruk, A. Korpala, J. Kowalewski, E. A. Rössler, and J. Moscicki, J. Chem. Phys. 137, 044512 (2012).
http://dx.doi.org/10.1063/1.4736854
28.
28. D. Kruk, A. Korpala, A. Kubica, R. Meier, E. A. Rössler, and J. Moscicki, J. Chem. Phys. 138, 024506 (2013).
http://dx.doi.org/10.1063/1.4772097
29.
29. R. Meier, D. Kruk, J. Gmeiner, and E. A. Rössler, J. Chem. Phys. 136, 034508 (2012).
http://dx.doi.org/10.1063/1.3672096
30.
30. D. Kruk, R. Meier, and E. A. Rössler, J. Phys. Chem. B 115, 951 (2011).
http://dx.doi.org/10.1021/jp110514r
31.
31. D. Kruk, A. Korpala, E. A. Rössler, K. A. Earle, W. Medycki, and J. K. Moscicki, J. Chem. Phys. 136, 114504 (2012).
http://dx.doi.org/10.1063/1.3692603
32.
32. D. Kruk, A. Kubica, W. Masierak, A. F. Privalov, M. Wojciechowski, and W. Medycki, Solid State Nucl. Magn. Reson. 40, 114 (2011).
http://dx.doi.org/10.1016/j.ssnmr.2011.08.003
33.
33. D. Kruk and O. Lips, J. Magn. Reson. 179, 250 (2006).
http://dx.doi.org/10.1016/j.jmr.2005.12.009
34.
34. I. Solomon, Phys. Rev. 99, 559 (1955).
http://dx.doi.org/10.1103/PhysRev.99.559
35.
35. N. Bloembergen and L. O. Morgan, J. Chem. Phys. 34, 842 (1961).
http://dx.doi.org/10.1063/1.1731684
36.
36. M. Goldman, J. Magn. Reson. 149, 160 (2001).
http://dx.doi.org/10.1006/jmre.2000.2239
37.
37. A. G. Redfield, in Encyclopedia of Nuclear Magnetic Resonance, edited by D. M. Grant and R. K. Harris (Wiley, Chichester, 1996), p. 4085.
38.
38. B. H. Robinson, D. A. Haas, and C. Mailer, Science 263, 490 (1994).
http://dx.doi.org/10.1126/science.8290958
39.
39. B. H. Robinson, A. W. Reese, E. Gibbons, and C. Mailer, J. Phys. Chem. B 103, 5881 (1999).
http://dx.doi.org/10.1021/jp990011i
40.
40. R. Owenius, G. E. Terry, M. J. Williams, S. S. Eaton, and G. R. Eaton, J. Phys. Chem. B 108, 9475 (2004).
http://dx.doi.org/10.1021/jp036020f
41.
41. H. Sato, S. E. Bottle, J. P. Blinco, A. S. Micallef, G. R. Eaton, and S. S. Eaton, J. Magn. Reson. 191, 66 (2008).
http://dx.doi.org/10.1016/j.jmr.2007.12.003
42.
42. C. J. F. Böttcher and P. Bordewijk, Theory of Electric Polarization (Elsevier, Amsterdam, 1973), Vol. 2.
43.
43. T. Blochowicz, A. Brodin, and E. A. Rössler, Adv. Chem. Phys. A 133, 127 (2006).
44.
44. A. M. F. Benial, M. Kumara Dhas, and A. Jawahar, Appl. Magn. Reson. 40, 311 (2011).
http://dx.doi.org/10.1007/s00723-011-0220-x
45.
45. J. S. Hwang, R. P. Mason, L.-P. Hwang, and J. H. Freed, J. Phys. Chem. 79, 489 (1975).
http://dx.doi.org/10.1021/j100572a017
46.
46. Y. Ayant, E. Belorizky, P. Fries, and J. Rosset, J. Phys. (Paris) 38, 325 (1977).
http://dx.doi.org/10.1051/jphys:01977003803032500
47.
47. J. P. Albrand, M. C. Taieb, P. H. Fries, and E. Belorizky, J. Chem. Phys. 75, 2141 (1981).
http://dx.doi.org/10.1063/1.442318
48.
48. J. P. Albrand, M. C. Taieb, P. H. Fries, and E. Belorizky, J. Chem. Phys. 78, 5809 (1983).
http://dx.doi.org/10.1063/1.445424
49.
49. R. Meier, R. Kahlau, D. Kruk, and E. A. Rössler, J. Phys. Chem. A 114, 7847 (2010).
http://dx.doi.org/10.1021/jp102498q
50.
50. L. W. Wang and H.-J. Fecht, J. Appl. Phys. 104, 113538 (2008).
http://dx.doi.org/10.1063/1.3033521
51.
51. B. Chen, E. E. Sigmund, and W. P. Halperin, Phys. Rev. Lett. 96, 145502 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.145502
52.
52. D. Kruk, J. Kowalewski, S. Tipikin, J. H. Freed, M. Moscicki, A. Mielczarek, and M. Port, J. Chem. Phys. 134, 024508 (2011).
http://dx.doi.org/10.1063/1.3516590
53.
53. W. Ling and A. Jerschow, J. Chem. Phys. 126, 064502 (2007).
http://dx.doi.org/10.1063/1.2435343
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/12/10.1063/1.4795006
Loading
/content/aip/journal/jcp/138/12/10.1063/1.4795006
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/12/10.1063/1.4795006
2013-03-29
2014-12-27

Abstract

The work presents a theory of nuclear (1H) spin-lattice relaxation dispersion for solutions of 15N and 14N radicals, including electron spin relaxation effects. The theory is a generalization of the approach presented by Kruk et al. [J. Chem. Phys.137, 044512 (Year: 2012)]10.1063/1.4736854. The electron spin relaxation is attributed to the anisotropic part of the electron spin–nitrogen spin hyperfine interaction modulated by rotational dynamics of the paramagnetic molecule, and described by means of Redfield relaxation theory. The 1H relaxation is caused by electron spin–proton spin dipole-dipole interactions which are modulated by relative translational motion of the solvent and solute molecules. The spectral density characterizing the translational dynamics is described by the force-free-hard-sphere model. The electronic relaxation influences the 1H relaxation by contributing to the fluctuations of the inter-molecular dipolar interactions. The developed theory is tested against 1H spin-lattice relaxation dispersion data for glycerol solutions of 4-oxo-TEMPO-d16-15N and 4-oxo-TEMPO-d16-14N covering the frequency range of 10 kHz–20 MHz. The studies are carried out as a function of temperature starting at 328 K and going down to 290 K. The theory gives a consistent overall interpretation of the experimental data for both 14N and 15N systems and explains the features of 1H relaxation dispersion resulting from the electron spin relaxation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/12/1.4795006.html;jsessionid=1cm4nedttfib.x-aip-live-03?itemId=/content/aip/journal/jcp/138/12/10.1063/1.4795006&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: 1H relaxation dispersion in solutions of nitroxide radicals: Influence of electron spin relaxation
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/12/10.1063/1.4795006
10.1063/1.4795006
SEARCH_EXPAND_ITEM