1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Vibrational and electronic excitations in fluorinated ethene cations from the ground up
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/12/10.1063/1.4795428
1.
1. G. Bieri, W. V. Niessen, L. Åsbrink, and A. Svensson, Chem. Phys. 60(1), 61 (1981).
http://dx.doi.org/10.1016/0301-0104(81)80107-3
2.
2. C. R. Brundle, M. B. Robin, N. A. Kuebler, and B. Harold, J. Am. Chem. Soc. 94(5), 1451 (1972).
http://dx.doi.org/10.1021/ja00760a007
3.
3. J. A. Sell and A. Kuppermann, J. Chem. Phys. 71(11), 4703 (1979).
http://dx.doi.org/10.1063/1.438254
4.
4. K. Takeshita, Theor. Chem. Acc. 101, 343 (1999);
http://dx.doi.org/10.1007/s002140050451
4.K. Takeshita, Chem. Phys. 250(2), 113 (1999).
http://dx.doi.org/10.1016/S0301-0104(99)00322-5
5.
5. R. Locht, B. Leyh, D. Dehareng, K. Hottmann, and H. Baumgärtel, J. Phys. B 43(1), 015102 (2010).
http://dx.doi.org/10.1088/0953-4075/43/1/015102
6.
6. R. Locht, D. Dehareng, and B. Leyh, J. Phys. B 45(11), 115101 (2012).
http://dx.doi.org/10.1088/0953-4075/45/11/115101
7.
7. G. K. Jarvis, K. J. Boyle, C. A. Mayhew, and R. P. Tuckett, J. Phys. Chem. A 102(19), 3230 (1998).
http://dx.doi.org/10.1021/jp971902y
8.
8. S. Eden, P. Limão-Vieira, P. A. Kendall, N. J. Mason, J. Delwiche, M.-J. Hubin-Franskin, T. Tanaka, M. Kitajima, H. Tanaka, H. Cho, and S. V. Hoffmann, Chem. Phys. 297(1–3), 257 (2004).
http://dx.doi.org/10.1016/j.chemphys.2003.10.031
9.
9. J. Harvey, A. Bodi, R. P. Tuckett, and B. Sztáray, Phys. Chem. Chem. Phys. 14, 3935 (2012).
http://dx.doi.org/10.1039/c2cp23878k
10.
10. J. Dannacher, A. Schmelzer, J.-P. Stadelmann, and J. Vogt, Int. J. Mass Spectrom. Ion Phys. 31, 175 (1979).
http://dx.doi.org/10.1016/0020-7381(79)80116-3
11.
11. F. Güthe, R. Locht, B. Leyh, H. Baumgärtel, and K.-M. Weitzel, J. Phys. Chem. A 103(42), 8404 (1999).
http://dx.doi.org/10.1021/jp9917897
12.
12. J. Momigny and R. Locht, Chem. Phys. Lett. 211(2), 161 (1993).
http://dx.doi.org/10.1016/0009-2614(93)85178-Q
13.
13. M. Roorda, A. J. Lorquet, and J. C. Lorquet, J. Phys. Chem. 95(23), 9118 (1991).
http://dx.doi.org/10.1021/j100176a018
14.
14. J.-L. Chang, C.-H. Huang, S.-C. Chen, T.-H. Yin, and Y.-T. Chen, J. Comput. Chem. 34(9), 757765 (2013).
http://dx.doi.org/10.1002/jcc.23194
15.
15. P. Hemberger, B. Noller, M. Steinbauer, I. Fischer, C. Alcaraz, B. R. K. Cunha de Miranda, G. A. Garcia, and H. Soldi-Lose, J. Phys. Chem. A 114(42), 11269 (2010).
http://dx.doi.org/10.1021/jp104019d
16.
16. L. Koziol, V. A. Mozhayskiy, B. J. Braams, J. M. Bowman, and A. I. Krylov, J. Phys. Chem. A 113(27), 7802 (2009).
http://dx.doi.org/10.1021/jp903476w
17.
17. S. Willitsch, U. Hollenstein, and F. Merkt, J. Chem. Phys. 120(4), 1761 (2004).
http://dx.doi.org/10.1063/1.1635815
18.
18. H. Köppel, L. S. Cederbaum, and W. Domcke, J. Chem. Phys. 77(4), 2014 (1982);
http://dx.doi.org/10.1063/1.444055
18.C. Sannen, G. Raşeev, C. Galloy, G. Fauville, and J. C. Lorquet, J. Chem. Phys. 74(4), 2402 (1981).
http://dx.doi.org/10.1063/1.441361
19.
19. M. Johnson, A. Bodi, L. Schulz, and T. Gerber, Nucl. Instrum. Methods Phys. Res. A 610, 597 (2009).
http://dx.doi.org/10.1016/j.nima.2009.08.069
20.
20. A. Bodi, M. Johnson, T. Gerber, Z. Gengeliczki, B. Sztáray, and T. Baer, Rev. Sci. Instrum. 80, 034101 (2009).
http://dx.doi.org/10.1063/1.3082016
21.
21. B. Sztáray and T. Baer, Rev. Sci. Instrum. 74(8), 3763 (2003).
http://dx.doi.org/10.1063/1.1593788
22.
22. A. Bodi, N. S. Shuman, and T. Baer, Phys. Chem. Chem. Phys. 11(46), 11013 (2009).
http://dx.doi.org/10.1039/b915400k
23.
23. W. A. Chupka, J. Chem. Phys. 98(6), 4520 (1993).
http://dx.doi.org/10.1063/1.465011
24.
24. M. J. T. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09, Revision A.1, Gaussian, Inc., Wallingford, CT, 2009.
25.
25. D. Spangenberg, P. Imhof, and K. Kleinermanns, Phys. Chem. Chem. Phys. 5(12), 2505 (2003).
http://dx.doi.org/10.1039/b301228j
26.
26. See supplementary material at http://dx.doi.org/10.1063/1.4795428 for Tables S1–S10 and Figure S1. [Supplementary Material]
27.
27. A. G. Baboul, L. A. Curtiss, P. C. Redfern, and K. J. Raghavachari, J. Chem. Phys. 110(16), 7650 (1999).
http://dx.doi.org/10.1063/1.478676
28.
28. Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. DiStasio Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. V. Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I. Krylov, P. M. W. Gill, and M. Head-Gordon, Phys. Chem. Chem. Phys. 8(27), 3172 (2006).
http://dx.doi.org/10.1039/b517914a
29.
29. P. M. Morse, Phys. Rev. 34(1), 57 (1929).
http://dx.doi.org/10.1103/PhysRev.34.57
30.
30. G. Herzberg and E. Teller, Z. Phys. Chem. Abt. B 21, 410 (1933).
31.
31. H. Köppel, L. S. Cederbaurn, W. Domcke, and S. S. Shaik, Angew. Chem., Int. Ed. Engl. 22(3), 210 (1983).
http://dx.doi.org/10.1002/anie.198302101
32.
32. T. Shimanouchi, Tables of Molecular Vibrational Frequencies, Consolidated Volume I (National Bureau of Standards, 1972), pp. 1160.
33.
33. R. S. Mulliken, J. Chem. Phys. 23(11), 1997 (1955).
http://dx.doi.org/10.1063/1.1740655
34.
34. T. Koopmans, Physica 1, 104 (1934).
http://dx.doi.org/10.1016/S0031-8914(34)90011-2
35.
35. T. Baer, A. Guerrero, J. Z. Davalos, and A. Bodi, Phys. Chem. Chem. Phys. 13(39), 17791 (2011).
http://dx.doi.org/10.1039/c1cp21926j
36.
36. J. Harvey, R. P. Tuckett, and A. Bodi, J. Phys. Chem. A 116(39), 9696 (2012).
http://dx.doi.org/10.1021/jp307941k
37.
37. A. Bodi, M. D. Brannock, B. Sztáray, and T. Baer, Phys. Chem. Chem. Phys. 14(46), 16047 (2012).
http://dx.doi.org/10.1039/c2cp43255b
38.
38. M. J. Simpson and R. P. Tuckett, J. Phys. Chem. A 116(31), 8119 (2012).
http://dx.doi.org/10.1021/jp304768n
39.
39. I. G. Simm, C. J. Danby, J. H. D. Eland, and P. I. Mansell, J. Chem. Soc., Faraday Trans. 2 72, 426 (1976).
http://dx.doi.org/10.1039/f29767200426
40.
40. D. M. Smith, R. P. Tuckett, K. R. Yoxall, K. Codling, and P. A. Hatherly, Chem. Phys. Lett. 216(3), 493 (1993).
http://dx.doi.org/10.1016/0009-2614(93)90133-L
41.
41. S. Borkar, B. Sztáray, and A. Bodi, Phys. Chem. Chem. Phys. 13(28), 13009 (2011).
http://dx.doi.org/10.1039/c1cp21015g
42.
42. E. Gridelet, D. Dehareng, R. Locht, A. J. Lorquet, J. C. Lorquet, and B. Leyh, J. Phys. Chem. A 109(37), 8225 (2005).
http://dx.doi.org/10.1021/jp051542b
43.
43. J. W. Ochterski, G. A. Petersson, and J. A. Montgomery, J. Chem. Phys. 104(7), 2598 (1996).
http://dx.doi.org/10.1063/1.470985
44.
44. T. Baer, B. Sztáray, J. P. Kercher, A. F. Lago, A. Bodi, C. Skull, and D. Palathinkal, Phys. Chem. Chem. Phys. 7, 1507 (2005).
http://dx.doi.org/10.1039/b502051d
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/12/10.1063/1.4795428
Loading
/content/aip/journal/jcp/138/12/10.1063/1.4795428
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/12/10.1063/1.4795428
2013-03-22
2014-07-28

Abstract

Valence threshold photoelectron spectra of four fluorinated ethenes; C2H3F, 1,1-C2H2F2, C2HF3, and C2F4 were recorded at the Swiss Light Source with 0.002 eV resolution. The adiabatic ionization energies were found to be 10.364 ± 0.007, 10.303 ± 0.005, 10.138 ± 0.007, and 10.110 ± 0.009 eV, respectively. The electronic ground state of each cation shows well-resolved multi-component vibrational progressions, the dominant transitions being in the C=C stretching mode. Density functional theory based Franck–Condon simulations are used to model the vibrational structure and assign the spectra, sometimes revising previous assignments. An additional vibrational progression in the first photoelectron band of 1,1-C2H2F2 indicates that the ground electronic state of the molecular ion is no longer planar. It is shown that ab initio vibrational frequencies together with the observed vibrational spacings do not always suffice to assign the spectra. In addition to symmetry rules governing the transitions, it is often essential to consider the associated Franck–Condon factors explicitly. Ionization to higher lying excited valence electronic states were also recorded by threshold ionization up to 23 eV photon energy. Equation-of-motion coupled cluster with single and double substitutions for ionization potential (EOM-IP-CCSD/cc-pVTZ) calculations confirmed historic electronic state assignments, and untangled the ever more congested spectra with increasing F-substitution. Previous attempts at illuminating the intriguing dissociative photoionization mechanism of fluorinated ethenes are reconsidered in view of new computational and experimental results. We show how non-statistical F-atom loss from C2H3F+ is decoupled from the ground state dissociation dynamics in the energy range of its state. Both the statistical and the non-statistical dissociation processes are mediated by a plethora of conical intersections.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/12/1.4795428.html;jsessionid=b0ffaoqslbu8d.x-aip-live-06?itemId=/content/aip/journal/jcp/138/12/10.1063/1.4795428&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Vibrational and electronic excitations in fluorinated ethene cations from the ground up
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/12/10.1063/1.4795428
10.1063/1.4795428
SEARCH_EXPAND_ITEM