1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Perspective: The glass transition
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/12/10.1063/1.4795539
1.
1. C. A. Angell, Science 267, 1924 (1995).
http://dx.doi.org/10.1126/science.267.5206.1924
2.
2. M. Ediger, C. Angell, and S. Nagel, J. Phys. Chem. 100, 13200 (1996).
http://dx.doi.org/10.1021/jp953538d
3.
3. C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and S. W. Martin, J. Appl. Phys. 88, 3113 (2000).
http://dx.doi.org/10.1063/1.1286035
4.
4. P. G. Debenedetti and F. H. Stillinger, Nature (London) 410, 259 (2001).
http://dx.doi.org/10.1038/35065704
5.
5. V. Lubchenko and P. G. Wolynes, Annu. Rev. Phys. Chem. 58, 235 (2007).
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104653
6.
6. A. Heuer, J. Phys.: Condens. Matter 20, 373101 (2008).
http://dx.doi.org/10.1088/0953-8984/20/37/373101
7.
7. A. Cavagna, Phys. Rep. 476, 51 (2009).
http://dx.doi.org/10.1016/j.physrep.2009.03.003
8.
8. D. Chandler and J. P. Garrahan, Annu. Rev. Phys. Chem. 61, 191 (2010).
http://dx.doi.org/10.1146/annurev.physchem.040808.090405
9.
9. L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.587
10.
10. M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).
http://dx.doi.org/10.1146/annurev.physchem.51.1.99
11.
11. S. C. Glotzer, J. Non-Cryst. Solids 274, 342 (2000).
http://dx.doi.org/10.1016/S0022-3093(00)00225-8
12.
12. H. C. Andersen, Proc. Natl. Acad. Sci. U.S.A. 102, 6686 (2005).
http://dx.doi.org/10.1073/pnas.0500946102
13.
13. R. Richert and C. Angell, J. Chem. Phys. 108, 9016 (1998).
http://dx.doi.org/10.1063/1.476348
14.
14. S. Gottke, D. David, G. Hinze, and M. Fayer, J. Phys. Chem. B 105, 238 (2001).
http://dx.doi.org/10.1021/jp002949d
15.
15. R. Richert, J. Chem. Phys. 123, 154502 (2005).
http://dx.doi.org/10.1063/1.2064667
16.
16. Y. S. Elmatad, D. Chandler, and J. P. Garrahan, J. Phys. Chem. B 113, 5563 (2009).
http://dx.doi.org/10.1021/jp810362g
17.
17. A. S. Keys, L. O. Hedges, J. P. Garrahan, S. C. Glotzer, and D. Chandler, Phys. Rev. X 1, 021013 (2011).
http://dx.doi.org/10.1103/PhysRevX.1.021013
18.
18. V. Velikov, S. Borick, and C. A. Angell, Science 294, 2335 (2001).
http://dx.doi.org/10.1126/science.1061757
19.
19. F. Sausset, G. Biroli, and J. Kurchan, J. Stat. Phys. 140, 718 (2010).
http://dx.doi.org/10.1007/s10955-010-0006-9
20.
20. T. R. Kirkpatrick, D. Thirumalai, and P. G. Wolynes, Phys. Rev. A 40, 1045 (1989).
http://dx.doi.org/10.1103/PhysRevA.40.1045
21.
21. W. Gotze and L. Sjorgen, Rep. Prog. Phys. 55, 241 (1992).
http://dx.doi.org/10.1088/0034-4885/55/3/001
22.
22. D. Reichman and P. Charbonneau, J. Stat. Mech. 2005, P05013.
http://dx.doi.org/10.1088/1742-5468/2005/05/P05013
23.
23. E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, Science 287, 627 (2000).
http://dx.doi.org/10.1126/science.287.5453.627
24.
24. W. K. Kegel and A. van Blaaderen, Science 287, 290 (2000).
http://dx.doi.org/10.1126/science.287.5451.290
25.
25. O. Dauchot, G. Marty, and G. Biroli, Phys. Rev. Lett. 95, 265701 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.265701
26.
26. A. Keys, A. Abate, S. Glotzer, and D. Durian, Nat. Phys. 3, 260 (2007).
http://dx.doi.org/10.1038/nphys572
27.
27. P. Mayer, H. Bissig, L. Berthier, L. Cipelletti, J. Garrahan, P. Sollich, and V. Trappe, Phys. Rev. Lett. 93, 115701 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.115701
28.
28. C. Brun, F. Ladieu, G. Biroli, J. Bouchaud et al., Phys. Rev. Lett. 109, 175702 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.175702
29.
29. T. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. Fredberg, and D. Weitz, Proc. Natl. Acad. Sci. U.S.A. 108, 4714 (2011).
http://dx.doi.org/10.1073/pnas.1010059108
30.
30. K. Schweizer, Curr. Opin. Colloid Interface Sci. 12, 297 (2007).
http://dx.doi.org/10.1016/j.cocis.2007.07.013
31.
31. K. Trachenko and V. V. Brazhkin, Phys. Rev. B 83, 014201 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.014201
32.
32. M. Wyart, Phys. Rev. Lett. 104, 095901 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.095901
33.
33. M. Van Hecke, J. Phys: Condens. Matter 22, 033101 (2010).
http://dx.doi.org/10.1088/0953-8984/22/3/033101
34.
34. A. J. Liu, S. R. Nagel, W. van Saarloos, and M. Wyart, “The jamming scenario an introduction and outlook,” in Dynamical Heterogeneities in Glasses, Colloids and Granular Materials, edited by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos (Oxford University Press, 2011).
35.
35. S. Karmakar, E. Lerner, and I. Procaccia, Phys. Rev. E 82, 055103(R) (2010);
http://dx.doi.org/10.1103/PhysRevE.82.055103
35.S. Karmakar, E. Lerner, and I. Procaccia, Phys. Rev. E 82, 026105 (2010);
http://dx.doi.org/10.1103/PhysRevE.82.026105
35.H. G. E. Hentschel, S. Karmakar, E. Lerner, and I. Procaccia, Phys. Rev. E 83, 061101 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.061101
36.
36. S. Torquato and F. Stillinger, Rev. Mod. Phys. 82, 2633 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.2633
37.
37. J.-L. Barrat and A. Lemaitre, “Heterogeneities in amorphous systems under shear,” in Dynamical Heterogeneities in Glasses, Colloids and Granular Materials, edited by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos (Oxford University Press, 2011).
38.
38. Dynamical Heterogeneities in Glasses, Colloids and Granular Materials, edited by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos (Oxford University Press, 2011).
39.
39. B. Olmos, I. Lesanovsky, and J. P. Garrahan, Phys. Rev. Lett. 109, 020403 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.020403
40.
40. Z. Nussinov, P. Johnson, M. J. Graf, and A. V. Balatsky, “Mapping between finite temperature classical and zero temperature quantum systems: Quantum critical jamming and quantum dynamical heterogeneities,” e-print arXiv:1209.3823 (unpublished).
41.
41. G. Tarjus, “An overview of the theories of the glass transition,” in Dynamical Heterogeneities in Glasses, Colloids and Granular Materials, edited by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos (Oxford University Press, 2011).
42.
42. P. Harrowell, “The length scales of dynamic heterogeneity: results from molecular dynamics simulations,” in Dynamical Heterogeneities in Glasses, Colloids and Granular Materials, edited by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos (Oxford University Press, 2011).
43.
43. R. Richert, N. Israeloff, C. Alba-Simionesco, F. Ladieu, and D. L'Hôte, “Experimental approaches to heterogeneous dynamics,” in Dynamical Heterogeneities in Glasses, Colloids and Granular Materials, edited by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos (Oxford University Press, 2011).
44.
44. R. Candelier, O. Dauchot, and G. Biroli, Phys. Rev. Lett. 102, 088001 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.088001
45.
45. P. Harrowell, Phys. Rev. E 48, 4359 (1993);
http://dx.doi.org/10.1103/PhysRevE.48.4359
45.D. N. Perera and P. Harrowell, Phys. Rev. E 54, 1652 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.1652
46.
46. J. P. Garrahan and D. Chandler, Phys. Rev. Lett. 89, 035704 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.035704
47.
47. F. Ritort and P. Sollich, Adv. Phys. 52, 219 (2003).
http://dx.doi.org/10.1080/0001873031000093582
48.
48. S. M. Bhattacharyya, B. Bagchi, and P. G. Wolynes, Proc. Natl. Acad. Sci. U.S.A. 105, 16077 (2008).
http://dx.doi.org/10.1073/pnas.0808375105
49.
49. R. Candelier, A. Widmer-Cooper et al., Phys. Rev. Lett. 105, 135702 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.135702
50.
50. A. Widmer-Cooper, P. Harrowell, and H. Fynewever, Phys. Rev. Lett. 93, 135701 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.135701
51.
51. A. Widmer-Cooper and P. Harrowell, Phys. Rev. Lett. 96, 185701 (2006);
http://dx.doi.org/10.1103/PhysRevLett.96.185701
51.A. Widmer-Cooper and P. Harrowell, J. Phys.: Condens. Matter 17, S4025 (2005).
http://dx.doi.org/10.1088/0953-8984/17/49/001
52.
52. A. Widmer-Cooper, H. Perry, P. Harrowell, and D. R. Reichman, Nat. Phys. 4, 711 (2008).
http://dx.doi.org/10.1038/nphys1025
53.
53. Y. S. Elmatad and A. S. Keys, Phys. Rev. E 85, 061502 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.061502
54.
54. C. Brito and M. Wyart, J. Chem. Phys. 131, 024504 (2009).
http://dx.doi.org/10.1063/1.3157261
55.
55. D. Ashton and J. P. Garrahan, Euro. Phys. J. E 30, 303 (2009).
http://dx.doi.org/10.1140/epje/i2009-10531-6
56.
56. B. Charbonneau, P. Charbonneau, and G. Tarjus, J. Chem. Phys. 138, 12A515 (2013).
http://dx.doi.org/10.1063/1.4770498
57.
57. T. Speck, A. Malins, and C. P. Royall, Phys. Rev. Lett. 109, 195703 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.195703
58.
58. A. Malins et al., J. Chem. Phys. 138, 12A535 (2013); e-print arXiv:1203.1732.
http://dx.doi.org/10.1063/1.4790515
59.
59. J. Kurchan and D. Levine, J. Phys. A 44, 035001 (2011).
http://dx.doi.org/10.1088/1751-8113/44/3/035001
60.
60. C. Cammarota and G. Biroli, Europhys. Lett. 98, 36005 (2012).
http://dx.doi.org/10.1209/0295-5075/98/36005
61.
61. A. Cavagna, T. S. Grigera, and P. Verrocchio, Phys. Rev. Lett. 98, 187801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.187801
62.
62. G. Biroli, J.-P. Bouchaud, A. Cavagna, T. S. Grigera, and P. Verrocchio, Nat. Phys. 4, 771 (2008).
http://dx.doi.org/10.1038/nphys1050
63.
63. F. Sausset and G. Tarjus, Phys. Rev. Lett. 104, 065701 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.065701
64.
64. B. Charbonneau, P. Charbonneau, and G. Tarjus, Phys. Rev. Lett. 108, 035701 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.035701
65.
65. L. Berthier and W. Kob, Phys. Rev. E 85, 011102 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.011102
66.
66. G. M. Hocky, T. E. Markland, and D. R. Reichman, Phys. Rev. Lett. 108, 225506 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.225506
67.
67. A. Montanari and G. Semerjian, J. Stat. Phys. 125, 23 (2006).
http://dx.doi.org/10.1007/s10955-006-9175-y
68.
68. W. Kob, S. Roldan-Vargas, and L. Berthier, Nat. Phys. 8, 697 (2012).
http://dx.doi.org/10.1038/nphys2435
69.
69. P. Charbonneau and G. Tarjus, “Decorrelation of the static and dynamic length scales in hard-sphere glass-formers,” e-print arXiv:1211.4821 (unpublished).
70.
70. J. P. Garrahan, P. Sollich, and C. Toninelli, “Kinetically constrained models,” in Dynamical Heterogeneities in Glasses, Colloids and Granular Materials, edited by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos (Oxford University Press, 2011).
71.
71. S. Franz and G. Semerjian, “Analytical approaches to time and length scales in models of glasses,” in Dynamical Heterogeneities in Glasses, Colloids and Granular Materials, edited by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos (Oxford University Press, 2011).
72.
72. S. Franz, J. Stat. Mech. 2005, P04001.
http://dx.doi.org/10.1088/1742-5468/2005/04/P04001
73.
73. M. Dzero, J. Schmalian, and P. G. Wolynes, Phys. Rev. B 72, 100201 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.100201
74.
74. R. L. Jack and J. P. Garrahan, J. Chem. Phys. 123, 164508 (2005).
http://dx.doi.org/10.1063/1.2075067
75.
75. P. N. Pusey and W. van Megen, Nature (London) 320, 340 (1986).
http://dx.doi.org/10.1038/320340a0
76.
76. R. Candelier, O. Dauchot, and G. Biroli, Euro. Phys. Lett. 92, 24003 (2010).
http://dx.doi.org/10.1209/0295-5075/92/24003
77.
77. J. D. Bernal, Nature (London) 185, 68 (1960).
http://dx.doi.org/10.1038/185068a0
78.
78. S. Torquato, T. M. Truskett, and P. G. Debenedetti, Phys. Rev. Lett. 84, 2064 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2064
79.
79. A. J. Liu and S. R. Nagel, Nature (London) 396, 21 (1998).
http://dx.doi.org/10.1038/23819
80.
80. P. Chaudhuri, L. Berthier, and S. Sastry, Phys. Rev. Lett. 104, 165701 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.165701
81.
81. R. Mari, F. Krzakala, and J. Kurchan, Phys. Rev. Lett. 103, 025701 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.025701
82.
82. L. Berthier and T. A. Witten, Phys. Rev. E 80, 021502 (2009);
http://dx.doi.org/10.1103/PhysRevE.80.021502
82.L. Berthier and T. A. Witten, Europhys. Lett. 86, 10001 (2009).
http://dx.doi.org/10.1209/0295-5075/86/10001
83.
83. A. Ikeda, L. Berthier, and P. Sollich, Phys. Rev. Lett. 109, 018301 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.018301
84.
84. V. Lubchenko and P. G. Wolynes, in Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications, edited by P. G. Wolynes and V. Lubchenko (Wiley, 2012).
85.
85. G. Biroli and J.-P. Bouchaud, in Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications, edited by P. G. Wolynes and V. Lubchenko (Wiley, 2012).
86.
86. G. Biroli, J. P. Bouchaud, K. Miyazaki, and D. R. Reichman, Phys. Rev. Lett. 97, 195701 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.195701
87.
87. L. Berthier, G. Biroli, J.-P. Bouchaud, W. Kob, K. Miyazaki, and D. R. Reichman, J. Chem. Phys. 126, 184503 (2007);
http://dx.doi.org/10.1063/1.2721554
87.L. Berthier, G. Biroli, J.-P. Bouchaud, W. Kob, K. Miyazaki, and D. R. Reichman, J. Chem. Phys. 126, 184504 (2007).
http://dx.doi.org/10.1063/1.2721555
88.
88. S. Franz et al., J. Chem. Phys. 138, 12A540 (2013);
http://dx.doi.org/10.1063/1.4776213
88.S. Franz, G. Parisi, F. Ricci-Tersenghi, and T. Rizzo, Eur. Phys. J. E 34, 102 (2011).
http://dx.doi.org/10.1140/epje/i2011-11102-0
89.
89. M. Castellana, A. Decelle, S. Franz, M. Mézard, and G. Parisi, Phys. Rev. Lett. 104, 127206 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.127206
90.
90. C. Cammarota, G. Biroli, M. Tarzia, and G. Tarjus, Phys. Rev. Lett. 106, 115705 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.115705
91.
91. C. Cammarota, A. Cavagna, G. Gradenigo, T. S. Grigera, and P. Verrocchio, J. Chem. Phys. 131, 194901 (2009).
http://dx.doi.org/10.1063/1.3257739
92.
92. S. Karmakar, C. Dasgupta, and S. Sastry, Proc. Natl. Acad. Sci. U.S.A. 106, 3675 (2009).
http://dx.doi.org/10.1073/pnas.0811082106
93.
93. G. Parisi and F. Zamponi, Rev. Mod. Phys. 82, 789 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.789
94.
94. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971).
http://dx.doi.org/10.1063/1.1674820
95.
95. A. Ikeda, L. Berthier, and G. Biroli, J. Chem. Phys. 138, 12A507 (2013).
http://dx.doi.org/10.1063/1.4769251
96.
96. J. Kurchan, G. Parisi, and F. Zamponi, J. Stat. Mech. 2012, P10012.
http://dx.doi.org/10.1088/1742-5468/2012/10/P10012
97.
97. J. D. Stevenson, A. M. Walczak, R. W. Hall, and P. G. Wolynes, J. Chem. Phys. 129, 194505 (2008).
http://dx.doi.org/10.1063/1.3009827
98.
98. J. M. Brader, T. Voigtmann, M. Fuchs, R. G. Larson, and M. E. Cates, Proc. Natl. Acad. Sci. U.S.A. 106, 15186 (2009).
http://dx.doi.org/10.1073/pnas.0905330106
99.
99. K. Miyazaki, D. R. Reichman, and R. Yamamoto, Phys. Rev. E 70, 011501 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.011501
100.
100. Y. Jung, J. P. Garrahan, and D. Chandler, Phys. Rev. E 69, 061205 (2004);
http://dx.doi.org/10.1103/PhysRevE.69.061205
100.Y. Jung, J. P. Garrahan, and D. Chandler, J. Chem. Phys. 123, 084509 (2005).
http://dx.doi.org/10.1063/1.2001629
101.
101. L. Berthier, D. Chandler, and J. P. Garrahan, Europhys. Lett. 69, 320 (2005);
http://dx.doi.org/10.1209/epl/i2004-10401-5
101.D. Chandler et al., Phys. Rev. E 74, 051501 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.051501
102.
102. E. Barkai, Y. J. Jung, and R. Silbey, Annu. Rev. Phys. Chem. 55, 457 (2004).
http://dx.doi.org/10.1146/annurev.physchem.55.111803.143246
103.
103. E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 (1965).
http://dx.doi.org/10.1063/1.1704269
104.
104. L. O. Hedges, L. Maibaum, D. Chandler, and J. P. Garrahan, J. Chem. Phys. 127, 211101 (2007).
http://dx.doi.org/10.1063/1.2803062
105.
105. P. Chaudhuri, L. Berthier, and W. Kob, Phys. Rev. Lett. 99, 060604 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.060604
106.
106. G. Biroli and J.-P. Bouchaud, J. Phys.: Condens. Matter 19, 205101 (2007).
http://dx.doi.org/10.1088/0953-8984/19/20/205101
107.
107. X. Xia and P. G. Wolynes, J. Phys. Chem. B 105, 6570 (2001).
http://dx.doi.org/10.1021/jp004616m
108.
108. P. Charbonneau, G. Parisi, and F. Zamponi, “Stokes-Einstein relation violation and the upper critical dimension of the glass transition,” e-print arXiv:1210.6073 (unpublished).
109.
109. A. Ikeda and K. Miyazaki, Phys. Rev. Lett. 104, 255704 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.255704
110.
110. B. Schmid and R. Schilling, Phys. Rev. E 81, 041502 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.041502
111.
111.For reviews see, J.-P. Eckmann, and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985);
http://dx.doi.org/10.1103/RevModPhys.57.617
111.H. Touchette, Phys. Rep. 478, 1 (2009).
http://dx.doi.org/10.1016/j.physrep.2009.05.002
112.
112. V. Lecomte, C. Appert-Rolland, and F. van Wijland, Phys. Rev. Lett. 95, 010601 (2005);
http://dx.doi.org/10.1103/PhysRevLett.95.010601
112.V. Lecomte, C. Appert-Rolland, and F. van Wijland, J. Stat. Phys. 127, 51 (2007).
http://dx.doi.org/10.1007/s10955-006-9254-0
113.
113. M. Merolle, J. Garrahan, and D. Chandler, Proc. Natl. Acad. Sci. U.S.A. 102, 10837 (2005).
http://dx.doi.org/10.1073/pnas.0504820102
114.
114. J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van Duijvendijk, and F. van Wijland, Phys. Rev. Lett. 98, 195702 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.195702
115.
115. L. O. Hedges, R. L. Jack, J. P. Garrahan, and D. Chandler, Science 323, 1309 (2009).
http://dx.doi.org/10.1126/science.1166665
116.
116. T. Speck and D. Chandler, J. Chem. Phys. 136, 184509 (2012).
http://dx.doi.org/10.1063/1.4712026
117.
117. Y. S. Elmatad, R. L. Jack, D. Chandler, and J. P. Garrahan, Proc. Natl. Acad. Sci. U.S.A. 107, 12793 (2010).
http://dx.doi.org/10.1073/pnas.1006306107
118.
118. C. Cammarota and G. Biroli, Proc. Natl. Acad. Sci. U.S.A. 109, 8850 (2012).
http://dx.doi.org/10.1073/pnas.1111582109
119.
119. C. Cammarota and G. Biroli, “Random pinning glass transition: Hallmarks, mean-field theory and renormalization group analysis,” J. Chem. Phys. (to be published); e-print arXiv:1210.8399.
120.
120. S. Franz, G. Parisi, and F. Ricci-Tersenghi, J. Stat. Mech. 2013, L02001.
http://dx.doi.org/10.1088/1742-5468/2013/02/L02001
121.
121. C. Cammarota, “A general approach to systems with randomly pinned particles: unfolding and clarifying the Random Pinning Glass Transition,” Europhys. Lett. (to be published); e-print arXiv:1211.4001.
122.
122. W. Kob and L. Berthier, “Probing a liquid to glass transition in equilibrium,” e-print arXiv:1301.1795 (unpublished).
123.
123. R. L. Jack and L. Berthier, Phys. Rev. E 85, 021120 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.021120
124.
124. K. Kim, Europhys. Lett. 61, 790 (2003).
http://dx.doi.org/10.1209/epl/i2003-00303-0
125.
125. K. Kim, K. Miyazaki, and S. Saito, J. Phys.: Condens. Matter 23, 234123 (2011).
http://dx.doi.org/10.1088/0953-8984/23/23/234123
126.
126. S. Karmakar and I. Procaccia, “Exposing the static scale of the glass transition by random pinning,” e-print arXiv:1105.4053 (unpublished).
127.
127. S. Franz, and G. Parisi, Phys. Rev. Lett. 79, 2486 (1997);
http://dx.doi.org/10.1103/PhysRevLett.79.2486
127.S. Franz, and G. Parisi, Physica A 261, 317 (1998).
http://dx.doi.org/10.1016/S0378-4371(98)00315-X
128.
128. C. Cammarota, A. Cavagna, I. Giardina, G. Gradenigo, T. S. Grigera, G. Parisi, and P. Verrocchio, Phys. Rev. Lett. 105, 055703 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.055703
129.
129. C. Flindt and J. P. Garrahan, Phys. Rev. Lett. 110, 050601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.050601
130.
130. S. F. Swallen et al., Science 315, 353 (2007).
http://dx.doi.org/10.1126/science.1135795
131.
131. S. F. Swallen, K. Traynor, R. J. McMahon, and M. D. Ediger, Phys. Rev. Lett. 102, 065503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.065503
132.
132. A. Sepulveda, S. F. Swallen, and M. D. Ediger, J. Chem. Phys. 138, 12A517 (2013).
http://dx.doi.org/10.1063/1.4772594
133.
133. F. Corberi, L. F. Cugliandolo, and H. Yoshino, “Growing length scales in aging systems,” in Dynamical Heterogeneities in Glasses, Colloids and Granular Materials, edited by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos (Oxford University Press, 2011).
134.
134. V. Lubchenko and P. G. Wolynes, J. Chem. Phys. 121, 2852 (2004).
http://dx.doi.org/10.1063/1.1771633
135.
135. A. S. Keys, J. P. Garrahan, and D. Chandler, “Calorimetric glass transition explained by hierarchical dynamic facilitation,” Proc. Natl. Acad. Sci. U.S.A. (in press).
136.
136. S. Haroche and J.-M. Raimond, Exploring the Quantum (Oxford University Press, 2006).
137.
137. I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).
http://dx.doi.org/10.1103/RevModPhys.80.885
138.
138. D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod. Phys. 75, 281 (2003).
http://dx.doi.org/10.1103/RevModPhys.75.281
139.
139. R. J. Schoelkopf and S. M. Girvin, Nature (London) 451, 664 (2008).
http://dx.doi.org/10.1038/451664a
140.
140. M. D. LaHaye et al., Nature (London) 459, 960 (2009).
http://dx.doi.org/10.1038/nature08093
141.
141. M. Boninsegni, N. Prokof'ev, and B. Svistunov, Phys. Rev. Lett. 96, 105301 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.105301
142.
142. G. Biroli, C. Chamon, and F. Zamponi, Phys. Rev. B 78, 224306 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.224306
143.
143. A. V. Balatsky, M. Yamashita, and S. Davis, Science 324, 632 (2009).
http://dx.doi.org/10.1126/science.1169512
144.
144. A. Das and B. K. Chakrabarti, Rev. Mod. Phys. 80, 1061 (2008).
http://dx.doi.org/10.1103/RevModPhys.80.1061
145.
145. V. Bapst, L. Foini, F. Krzakala, G. Semerjian, and F. Zamponi, Phys. Rep. 523, 127 (2013).
http://dx.doi.org/10.1016/j.physrep.2012.10.002
146.
146. A. Amir, Y. Oreg, and Y. Imry, Phys. Rev. Lett. 103, 126403 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.126403
147.
147. A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, Rev. Mod. Phys. 83, 863 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.863
148.
148. D. M. Basko, I. Aleiner, and B. L. Altshuler, Ann. Phys. (N.Y.) 321, 1126 (2006).
http://dx.doi.org/10.1016/j.aop.2005.11.014
149.
149. D. E. Logan and P. G. Wolynes, Phys. Rev. B 36, 4135 (1987);
http://dx.doi.org/10.1103/PhysRevB.36.4135
149.D. E. Leitner and P. G. Wolynes, J. Chem. Phys. 93, 4994 (1990);
http://dx.doi.org/10.1063/1.458637
149.R. Bigwood et al., Proc. Natl. Acad. Sci. U.S.A. 95, 5960 (1998).
http://dx.doi.org/10.1073/pnas.95.11.5960
150.
150. A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.174411
151.
151. T. E. Markland, J. A. Morrone, B. J. Berne, K. Miyazaki, E. Rabani, and D. R. Reichman, Nat. Phys. 7, 134 (2011).
http://dx.doi.org/10.1038/nphys1865
152.
152. C. Chamon, Phys. Rev. Lett. 94, 040402 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.040402
153.
153. Z. Nussinov, Physics 1, 40 (2008).
http://dx.doi.org/10.1103/Physics.1.40
154.
154. D. Poletti, P. Barmettler, A. Georges, and C. Kollath, “Emergence of glass-like dynamics for dissipative and strongly interacting bosons,” e-print arXiv:1212.4637 (unpublished).
155.
155. J. A. Hodgdon and F. H. Stillinger, Phys. Rev. E 48, 207 (1993);
http://dx.doi.org/10.1103/PhysRevE.48.207
155.G. Tarjus and D. Kivelson, J. Chem. Phys. 103, 3071 (1995).
http://dx.doi.org/10.1063/1.470495
156.
156. L. Berthier, G. Biroli, J.-P. Bouchaud, and R. L. Jack, “Overview of different characterisations of dynamic heterogeneity,” in Dynamical Heterogeneities in Glasses, Colloids and Granular Materials, edited by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos (Oxford University Press, 2011).
157.
157. J.-P. Bouchaud and G. Biroli, J. Chem. Phys. 121, 7347 (2004).
http://dx.doi.org/10.1063/1.1796231
158.
158. G. Tarjus, S. A. Kivelson, Z. Nussinov, and P. Viot, J. Phys. Cond. Mat. 17, R1143 (2005).
http://dx.doi.org/10.1088/0953-8984/17/50/R01
159.
159. C. J. Fullerton and R. L. Jack, “Dynamical phase transitions in supercooled liquids: Interpreting measurements of dynamical activity,” e-print arXiv:1302.6880 (unpublished).
160.
160. L. F. Cugliandolo, “Lecture notes in slow relaxation and non equilibrium dynamics in condensed matter,” Les Houches Session 77 (July 2002), edited by J.-L. Barrat, J. Dalibard, J. Kurchan, and M. V. Feigel'man.
161.
161. L. Cipelletti and E. Weeks, “Glassy dynamics and dynamical heterogeneity in colloids,” in Dynamical Heterogeneities in Glasses, Colloids and Granular Materials, edited by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos (Oxford University Press, 2011).
162.
162. C. Maggi, R. Di Leonardo, G. Ruocco, and J. C. Dyre, Phys. Rev. Lett. 109, 097401 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.097401
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/12/10.1063/1.4795539
Loading
/content/aip/journal/jcp/138/12/10.1063/1.4795539
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/12/10.1063/1.4795539
2013-03-26
2014-11-27

Abstract

We provide here a brief perspective on the glass transition field. It is an assessment, written from the point of view of theory, of where the field is and where it seems to be heading. We first give an overview of the main phenomenological characteristics, or “stylised facts,” of the glass transition problem, i.e., the central observations that a theory of the physics of glass formation should aim to explain in a unified manner. We describe recent developments, with a particular focus on real space properties, including dynamical heterogeneity and facilitation, the search for underlying spatial or structural correlations, and the relation between the thermal glass transition and athermal jamming. We then discuss briefly how competing theories of the glass transition have adapted and evolved to account for such real space issues. We consider in detail two conceptual and methodological approaches put forward recently, that aim to access the fundamental critical phenomenon underlying the glass transition, be it thermodynamic or dynamic in origin, by means of biasing of ensembles, of configurations in the thermodynamic case, or of trajectories in the dynamic case. We end with a short outlook.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/12/1.4795539.html;jsessionid=1lpdi8pxk37tp.x-aip-live-03?itemId=/content/aip/journal/jcp/138/12/10.1063/1.4795539&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Perspective: The glass transition
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/12/10.1063/1.4795539
10.1063/1.4795539
SEARCH_EXPAND_ITEM