1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Growing room temperature ice with graphene
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/12/10.1063/1.4798941
1.
1. J. N. Israelachvili and R. M. Pashley, Nature (London) 306, 249 (1983).
http://dx.doi.org/10.1038/306249a0
2.
2. J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1991).
3.
3. I. Brovchenko and A. Oleinova, Interfacial and Confined Water (Elsevier, 2008).
4.
4. T. G. Lombardo, N. Giovambattista, and P. G. Debenedetti, Faraday Discuss. 141, 359 (2009).
http://dx.doi.org/10.1039/b805361h
5.
5. K. Xu, P. Cao, and J. R. Heath, Science 329, 1188 (2010).
http://dx.doi.org/10.1126/science.1192907
6.
6. N. Severin, P. Lange, I. M. Sokolov, and J. P. Rabe, Nano Lett. 12, 774 (2012).
http://dx.doi.org/10.1021/nl2037358
7.
7. X. Feng, S. Maier, and M. Salmeron, J. Am. Chem. Soc. 134, 5662 (2012).
http://dx.doi.org/10.1021/ja3003809
8.
8. K. T. He, J. D. Wood, G. P. Doidge, E. Pop, and J. W. Lyding, Nano Lett. 12, 2665 (2012).
http://dx.doi.org/10.1021/nl202613t
9.
9. P. G. Cao, K. Xu, J. O. Varghese, and J. R. Heath, Nano Lett. 11, 5581 (2011).
http://dx.doi.org/10.1021/nl2036639
10.
10. H. Komurasaki, T. Tsukamoto, K. Yamazaki, and T. Ogino, J. Phys. Chem. C 116, 10084 (2012).
http://dx.doi.org/10.1021/jp301402u
11.
11. A. Verdaguer, G. M. Sacha, H. Bluhm, and M. Salmeron, Chem. Rev. 106, 1478 (2006).
http://dx.doi.org/10.1021/cr040376l
12.
12. P. J. Feibelman, Phys. Today 63(2), 34 (2010).
http://dx.doi.org/10.1063/1.3326987
13.
13. A. Verdaguer, C. Weis, G. Oncins, G. Ketteler, H. Bluhm, and M. Salmeron, Langmuir 23, 9699 (2007).
http://dx.doi.org/10.1021/la700893w
14.
14. E. A. Zheligovskaya and G. G. Malenkov, Russ. Chem. Rev. 75, 57 (2006).
http://dx.doi.org/10.1070/RC2006v075n01ABEH001184
15.
15. O. Teschke, Langmuir 26, 16986 (2010).
http://dx.doi.org/10.1021/la103227j
16.
16. K. B. Jinesh and J. W. M. Frenken, Phys. Rev. Lett. 101, 036101 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.036101
17.
17. J. Fraxedas, A. Verdaguer, F. Sanz, S. Baudron, and P. Batail, Surf. Sci. 588, 41 (2005).
http://dx.doi.org/10.1016/j.susc.2005.05.024
18.
18. S. H. Khan, G. Matei, S. Patil, and P. M. Hoffmann, Phys. Rev. Lett. 105, 106101 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.106101
19.
19. M. Antognozzi, A. D. L. Humphris, and M. J. Miles, Appl. Phys. Lett. 78, 300 (2001).
http://dx.doi.org/10.1063/1.1339997
20.
20. K. Röttger, A. Endriss, J. Ihringer, S. Doyle, and W. F. Kuhs, Acta Crystallogr. B50, 644 (1994).
http://dx.doi.org/10.1107/S0108768194004933
21.
21. A. Verdaguer, M. Cardellach, and J. Fraxedas, J. Chem. Phys. 129, 174705 (2008).
http://dx.doi.org/10.1063/1.3006098
22.
22. M. Cardellach, A. Verdaguer, J. Santiso, and J. Fraxedas, J. Chem. Phys. 132, 234708 (2010).
http://dx.doi.org/10.1063/1.3456698
23.
23. M. Cardellach, A. Verdaguer, and J. Fraxedas, Surf. Sci. 605, 1929 (2011).
http://dx.doi.org/10.1016/j.susc.2011.07.003
24.
24. S. Santos, A. Verdaguer, T. Souier, N. H. Thomson, and M. Chiesa, Nanotechnology 22, 465705 (2011).
http://dx.doi.org/10.1088/0957-4484/22/46/465705
25.
25. D. R. Nutt and A. J. Stone, J. Chem. Phys. 117, 800 (2002).
http://dx.doi.org/10.1063/1.1484377
26.
26. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).
http://dx.doi.org/10.1073/pnas.0502848102
27.
27. V. Sadtchenko, P. Conrad, and G. E. Ewing, J. Chem. Phys. 116, 4293 (2002).
http://dx.doi.org/10.1063/1.1446427
28.
28. A. S. Foster, T. Trevethan, and A. L. Shluger, Phys. Rev. B 80, 115421 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.115421
29.
29. S. R. Wang, Y. Zhang, N. Abidi, and L. Cabrales, Langmuir 25, 11078 (2009).
http://dx.doi.org/10.1021/la901402f
30.
30. J. Moser, A. Verdaguer, D. Jimenez, A. Barreiro, and A. Bachtold, Appl. Phys. Lett. 92, 123507 (2008).
http://dx.doi.org/10.1063/1.2898501
31.
31. A. Verdaguer, M. Cardellach, J. J. Segura, G. M. Sacha, J. Moser, M. Zdrojek, A. Bachtold, and J. Fraxedas, Appl. Phys. Lett. 94, 233105 (2009).
http://dx.doi.org/10.1063/1.3149770
32.
32. J. Rafiee, X. Mi, H. Gullapalli, A. V. Thomas, F. Yavari, Y. Shi, P. M. Ajayan, and N. A. Koratkar, Nature Mater. 11, 217 (2012).
http://dx.doi.org/10.1038/nmat3228
33.
33. D. Chandler, Nature (London) 437, 640 (2005).
http://dx.doi.org/10.1038/nature04162
34.
34. K. Suzuki, N. Oyabu, K. Kobayashi, K. Matsushige, and H. Yamada, Appl. Phys. Express 4, 125102 (2011).
http://dx.doi.org/10.1143/APEX.4.125102
35.
35. J. Hu, X. D. Xiao, D. F. Ogletree, and M. Salmeron, Science 268, 267 (1995).
http://dx.doi.org/10.1126/science.268.5208.267
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/12/10.1063/1.4798941
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Top) Freshly cleaved BaF2(111) surface partially covered with few layer graphene flakes deposited at 30% RH. (a) AM-AFM and (b) c-AFM images taken at RT. Bright stripes in (a) correspond to graphene wrinkles. The image in (b) corresponds to a magnified view of the area enclosed in the square in (a). (Bottom) AM-AFM images taken at 50% RH and RT of a freshly cleaved BaF2(111) surface covered with water layers corresponding to the (c) unperturbed and (d) perturbed case, respectively.

Image of FIG. 2.

Click to view

FIG. 2.

c-AFM images of few layer graphene deposited on freshly cleaved BaF2(111) surfaces at 7%, 15%, 30%, 50%, 70%, and 90% RH, respectively. Bright stripes correspond to graphene wrinkles.

Image of FIG. 3.

Click to view

FIG. 3.

(a) (left) c-AFM image of few layer graphene deposited on freshly cleaved BaF2(111) surfaces at 50% RH (as in Fig. 2 ), where the crystallographic [ ] direction is indicated. (Top right) Cross section of the line drawn in the image and (bottom right) histogram of the distribution of heights. (b) (left) Scheme of the (111) surface showing the main directions (in red) corresponding to the angles 0°, 60°, and 120° refereed to [ ] extracted from the histogram (right).

Image of FIG. 4.

Click to view

FIG. 4.

Height profiles of two different regions of the c-AFM image from Fig. 2 (sample prepared at RH ∼ 70%). The images have been slightly shaded in order to enhance the contrast at water layers edges. Discontinuous parallel lines indicate the expected location of ice Ih BLs planes and the interbilayer distance (0.37 nm).

Image of FIG. 5.

Click to view

FIG. 5.

c-AFM images of few layer graphene on CaF2(111) (left) and BaF2(111) (right) prepared at 40% RH. Bright stripes correspond to graphene wrinkles.

Loading

Article metrics loading...

/content/aip/journal/jcp/138/12/10.1063/1.4798941
2013-03-28
2014-04-16

Abstract

Water becomes ordered in the form of hexagonal ice at room temperature under controlled humidity conditions upon confinement in the nanometer range between protective graphene sheets and crystalline (111) surfaces with hexagonal symmetry of the alkali earth fluoride BaF2. Interfacial water/substrate pseudoepitaxy turns out to be a critical parameter since ice is only formed when the lattice mismatch is small, an observation based on the absence of ice on (111) surfaces of isostructural CaF2

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/12/1.4798941.html;jsessionid=lb3gre8ly4yj.x-aip-live-03?itemId=/content/aip/journal/jcp/138/12/10.1063/1.4798941&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Growing room temperature ice with graphene
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/12/10.1063/1.4798941
10.1063/1.4798941
SEARCH_EXPAND_ITEM