1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Communication: A new ab initio potential energy surface for HCl–H2O, diffusion Monte Carlo calculations of D 0 and a delocalized zero-point wavefunction
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/12/10.1063/1.4799231
1.
1. B. E. Casterline, A. K. Mollner, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A 114, 9774 (2010).
http://dx.doi.org/10.1021/jp102532m
2.
2. B. E. Rocher-Casterline, A. K. Mollner, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A 115, 6903 (2011).
http://dx.doi.org/10.1021/jp112024s
3.
3. A. M. Morrison, S. D. Flynn, T. Liang, and G. E. Douberly, J. Phys. Chem. A 114, 8090 (2010).
http://dx.doi.org/10.1021/jp104545j
4.
4. S. D. Flynn, D. Skvortsov, A. M. Morrison, T. Liang, M. Y. Choi, G. E. Douberly, and A. F. Vilesov, J. Phys. Chem. Lett. 1, 2233 (2010).
http://dx.doi.org/10.1021/jz100637m
5.
5. P. Ayotte, P. Marchand, J. L. Daschbach, R. S. Smith, and B. D. Kay, J. Phys. Chem. A 115, 6002 (2011).
http://dx.doi.org/10.1021/jp110398j
6.
6. S. M. Brastad and G. M. Nathanson, Phys. Chem. Chem. Phys. 13, 8284 (2011).
http://dx.doi.org/10.1039/c0cp02540b
7.
7. A. D. Boese, H. Forbert, M. Masia, A. Tekin, D. Marx, and G. Jansen, Phys. Chem. Chem. Phys. 13, 14550 (2011).
http://dx.doi.org/10.1039/c1cp20991d
8.
8. H. Forbert, M. Masia, A. Kaczmarek-Kedziera, N. N. Nair, and D. Marx, J. Am. Chem. Soc. 133, 4062 (2011).
http://dx.doi.org/10.1021/ja1099209
9.
9. M. Oncak, P. Slavicek, M. Farnik, and U. Buck, J. Phys. Chem. A 115, 6155 (2011).
http://dx.doi.org/10.1021/jp111264e
10.
10. Ł. Walewski, H. Forbert, and D. Marx, J. Phys. Chem. Lett. 2, 3069 (2011).
http://dx.doi.org/10.1021/jz2013819
11.
11. S. Sugawara, T. Yoshikawa, T. Takayanagi, and M. Tachikawa, Chem. Phys. Lett. 501, 238 (2011).
http://dx.doi.org/10.1016/j.cplett.2010.11.051
12.
12. R. K. Talukdar, J. B. Burkholder, J. M. Roberts, R. W. Portmann, and A. R. Ravishankara, J. Phys. Chem. A 116, 6003 (2012).
http://dx.doi.org/10.1021/jp210960z
13.
13. R. Bianco and J. T. Hynes, Acc. Chem. Res. 39, 159 (2006).
http://dx.doi.org/10.1021/ar040197q
14.
14. M. A. Tolbert, M. J. Rossi, and D. M. Golden, Science 240, 1018 (1988).
http://dx.doi.org/10.1126/science.240.4855.1018
15.
15. M. J. Molina, T. L. Tso, L. T. Molina, and F. C. Wang, Science 238, 1253 (1987).
http://dx.doi.org/10.1126/science.238.4831.1253
16.
16. C. T. Lee, C. Sosa, M. Planas, and J. J. Novoa, J. Chem. Phys. 104, 7081 (1996).
http://dx.doi.org/10.1063/1.471426
17.
17. D. E. Bacelo, R. C. Binning, and Y. Ishikawa, J. Phys. Chem. A 103, 4631 (1999).
http://dx.doi.org/10.1021/jp9843003
18.
18. A. Milet, C. Struniewicz, R. Moszynski, and P. E. S. Wormer, J. Chem. Phys. 115, 349 (2001).
http://dx.doi.org/10.1063/1.1377875
19.
19. S. Odde, B. J. Mhin, S. Lee, H. M. Lee, and K. S. Kim, J. Chem. Phys. 120, 9524 (2004).
http://dx.doi.org/10.1063/1.1711596
20.
20. M. Masia, H. Forbert, and D. Marx, J. Phys. Chem. A 111, 12181 (2007).
http://dx.doi.org/10.1021/jp0740494
21.
21. S. Re, Y. Osamura, Y. Suzuki, and H. F. Schaefer, J. Chem. Phys. 109, 973 (1998).
http://dx.doi.org/10.1063/1.476640
22.
22. G. M. Chaban, R. B. Gerber, and K. C. Janda, J. Phys. Chem. A 105, 8323 (2001).
http://dx.doi.org/10.1021/jp011567k
23.
23. A. Gutberlet, G. Schwaab, O. Birer, M. Masia, A. Kaczmarek, H. Forbert, M. Havenith, and D. Marx, Science 324, 1545 (2009).
http://dx.doi.org/10.1126/science.1171753
24.
24. M. Ortlieb, O. Birer, M. Letzner, G. W. Schwaab, and M. Havenith, J. Phys. Chem. A 111, 12192 (2007).
http://dx.doi.org/10.1021/jp0759980
25.
25. D. Skvortsov, S. J. Lee, M. Y. Choi, and A. F. Vilesov, J. Phys. Chem. A 113, 7360 (2009).
http://dx.doi.org/10.1021/jp811497c
26.
26. Z. Kisiel, B. A. Pietrewicz, P. W. Fowler, A. C. Legon, and E. Steiner, J. Phys. Chem. A 104, 6970 (2000).
http://dx.doi.org/10.1021/jp001156o
27.
27. A. C. Legon and L. C. Willoughby, Chem. Phys. Lett. 95, 449 (1983).
http://dx.doi.org/10.1016/0009-2614(83)80592-2
28.
28. M. Weimann, M. Fárník, and M. A. Suhm, Phys. Chem. Chem. Phys. 4, 3933 (2002).
http://dx.doi.org/10.1039/b204840j
29.
29. M. Fárník, M. Weimann, and M. A. Suhm, J. Chem. Phys. 118, 10120 (2003).
http://dx.doi.org/10.1063/1.1571525
30.
30. A. J. Huneycutt, R. J. Stickland, F. Hellberg, and R. J. Saykally, J. Chem. Phys. 118, 1221 (2003).
http://dx.doi.org/10.1063/1.1529177
31.
31. B. S. Ault and G. C. Pimentel, J. Phys. Chem. 77, 57 (1973).
http://dx.doi.org/10.1021/j100620a012
32.
32. G. P. Ayers and A. D. E. Pullin, Spectrochim. Acta., Part A 32, 1641 (1976).
http://dx.doi.org/10.1016/0584-8539(76)80266-8
33.
33. A. Schriver, B. Silvi, D. Maillard, and J. P. Perchard, J. Phys. Chem. 81, 2095 (1977).
http://dx.doi.org/10.1021/j100537a011
34.
34. A. J. Barnes, J. Mol. Struct. 60, 343 (1980).
http://dx.doi.org/10.1016/0022-2860(80)80087-1
35.
35. C. Amirand and D. Maillard, J. Mol. Struct. 176, 181 (1988).
http://dx.doi.org/10.1016/0022-2860(88)80240-0
36.
36. M. J. Packer and D. C. Clary, J. Phys. Chem. 99, 14323 (1995).
http://dx.doi.org/10.1021/j100039a020
37.
37. E. M. Cabaleiro-Lago, J. M. Hermida-Ramon, and J. Rodriguez-Otero, J. Chem. Phys. 117, 3160 (2002).
http://dx.doi.org/10.1063/1.1493770
38.
38. M. E. Alikhani and B. Silvi, Phys. Chem. Chem. Phys. 5, 2494 (2003).
http://dx.doi.org/10.1039/b301231j
39.
39. R. P. de Tudela, P. Barragan, R. Prosmiti, P. Villarreal, and G. Delgado-Barrio, J. Phys. Chem. A 115, 2483 (2011).
http://dx.doi.org/10.1021/jp200392w
40.
40. P. H. Acioli, Z. Xie, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 128, 104318 (2008).
http://dx.doi.org/10.1063/1.2838847
41.
41. M. E. Tuckerman, Science 275, 817 (1997).
http://dx.doi.org/10.1126/science.275.5301.817
42.
42. A. B. McCoy, B. J. Braams, A. Brown, X. Huang, Z. Jin, and J. M. Bowman, J. Phys. Chem. A 108, 4991 (2004).
http://dx.doi.org/10.1021/jp0487096
43.
43. G. Knizia, T. B. Adler, and H. J. Werner, J. Chem. Phys. 130, 054104 (2009).
http://dx.doi.org/10.1063/1.3054300
44.
44. H.-J. Werner, P. J. Knowles, F. R. Manby, M. Schütz et al., MOLPRO, version 2010.1, a package of ab initio programs, 2010, see http://www.molpro.net.
45.
45. B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009).
http://dx.doi.org/10.1080/01442350903234923
46.
46.See supplementary material at http://dx.doi.org/10.1063/1.4799231 for details on the potential fitting procedure and precision, stationary point geometries and frequencies, and a plot of the dissociation coordinate. [Supplementary Material]
47.
47. S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).
http://dx.doi.org/10.1080/00268977000101561
48.
48. D. Feller, J. Chem. Phys. 98, 7059 (1993).
http://dx.doi.org/10.1063/1.464749
49.
49. I. Kosztin, B. Faber, and K. Schulten, Am. J. Phys. 64, 633 (1996).
http://dx.doi.org/10.1119/1.18168
50.
50. A. B. McCoy, Int. Rev. Phys. Chem. 25, 77 (2006).
http://dx.doi.org/10.1080/01442350600679347
51.
51. H. Partridge and D. W. Schwenke, J. Chem. Phys. 106, 4618 (1997).
http://dx.doi.org/10.1063/1.473987
52.
52. D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992).
http://dx.doi.org/10.1063/1.462100
53.
53. Y. Wang and J. M. Bowman, J. Chem. Phys. 134, 154510 (2011).
http://dx.doi.org/10.1063/1.3579995
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/12/10.1063/1.4799231
Loading
/content/aip/journal/jcp/138/12/10.1063/1.4799231
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/12/10.1063/1.4799231
2013-03-29
2014-11-24

Abstract

We report a global, full-dimensional, ab initio potential energy surface describing the HCl–H2O dimer. The potential is constructed from a permutationally invariant fit, using Morse-like variables, to over 44 000 CCSD(T)-F12b/aug-cc-pVTZ energies. The surface describes the complex and dissociated monomers with a total RMS fitting error of 24 cm−1. The normal modes of the minima, low-energy saddle point and separated monomers, the double minimum isomerization pathway and electronic dissociation energy are accurately described by the surface. Rigorous quantum mechanical diffusion Monte Carlo (DMC) calculations are performed to determine the zero-point energy and wavefunction of the complex and the separated fragments. The calculated zero-point energies together with a D e value calculated from CCSD(T) with a complete basis set extrapolation gives a D 0 value of 1348 ± 3 cm−1, in good agreement with the recent experimentally reported value of 1334 ± 10 cm−1[B. E. Casterline, A. K. Mollner, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A114, 9774 (Year: 2010)10.1021/jp102532m]. Examination of the DMC wavefunction allows for confident characterization of the zero-point geometry to be dominant at the C 2v double-well saddle point and not the C s global minimum. Additional support for the delocalized zero-point geometry is given by numerical solutions to the 1D Schrödinger equation along the imaginary-frequency out-of-plane bending mode, where the zero-point energy is calculated to be 52 cm−1 above the isomerization barrier. The D 0 of the fully deuterated isotopologue is calculated to be 1476 ± 3 cm−1, which we hope will stand as a benchmark for future experimental work.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/12/1.4799231.html;jsessionid=14e32y7yf1iux.x-aip-live-06?itemId=/content/aip/journal/jcp/138/12/10.1063/1.4799231&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: A new ab initio potential energy surface for HCl–H2O, diffusion Monte Carlo calculations of D0 and a delocalized zero-point wavefunction
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/12/10.1063/1.4799231
10.1063/1.4799231
SEARCH_EXPAND_ITEM