Important Notice Regarding Scitation Services

Scitation will be upgrading its access control system between July 4 and July 10, 2014. During this process, existing subscriptions and purchased content will remain available and unaffected, but some site and personal account functionality will be disabled.

Services will be fully restored on July 10, 2014. Thank you for your patience!

Click here for complete details.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Communication: A new ab initio potential energy surface for HCl–H2O, diffusion Monte Carlo calculations of D 0 and a delocalized zero-point wavefunction
Rent this article for
Access full text Article
1. B. E. Casterline, A. K. Mollner, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A 114, 9774 (2010).
2. B. E. Rocher-Casterline, A. K. Mollner, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A 115, 6903 (2011).
3. A. M. Morrison, S. D. Flynn, T. Liang, and G. E. Douberly, J. Phys. Chem. A 114, 8090 (2010).
4. S. D. Flynn, D. Skvortsov, A. M. Morrison, T. Liang, M. Y. Choi, G. E. Douberly, and A. F. Vilesov, J. Phys. Chem. Lett. 1, 2233 (2010).
5. P. Ayotte, P. Marchand, J. L. Daschbach, R. S. Smith, and B. D. Kay, J. Phys. Chem. A 115, 6002 (2011).
6. S. M. Brastad and G. M. Nathanson, Phys. Chem. Chem. Phys. 13, 8284 (2011).
7. A. D. Boese, H. Forbert, M. Masia, A. Tekin, D. Marx, and G. Jansen, Phys. Chem. Chem. Phys. 13, 14550 (2011).
8. H. Forbert, M. Masia, A. Kaczmarek-Kedziera, N. N. Nair, and D. Marx, J. Am. Chem. Soc. 133, 4062 (2011).
9. M. Oncak, P. Slavicek, M. Farnik, and U. Buck, J. Phys. Chem. A 115, 6155 (2011).
10. Ł. Walewski, H. Forbert, and D. Marx, J. Phys. Chem. Lett. 2, 3069 (2011).
11. S. Sugawara, T. Yoshikawa, T. Takayanagi, and M. Tachikawa, Chem. Phys. Lett. 501, 238 (2011).
12. R. K. Talukdar, J. B. Burkholder, J. M. Roberts, R. W. Portmann, and A. R. Ravishankara, J. Phys. Chem. A 116, 6003 (2012).
13. R. Bianco and J. T. Hynes, Acc. Chem. Res. 39, 159 (2006).
14. M. A. Tolbert, M. J. Rossi, and D. M. Golden, Science 240, 1018 (1988).
15. M. J. Molina, T. L. Tso, L. T. Molina, and F. C. Wang, Science 238, 1253 (1987).
16. C. T. Lee, C. Sosa, M. Planas, and J. J. Novoa, J. Chem. Phys. 104, 7081 (1996).
17. D. E. Bacelo, R. C. Binning, and Y. Ishikawa, J. Phys. Chem. A 103, 4631 (1999).
18. A. Milet, C. Struniewicz, R. Moszynski, and P. E. S. Wormer, J. Chem. Phys. 115, 349 (2001).
19. S. Odde, B. J. Mhin, S. Lee, H. M. Lee, and K. S. Kim, J. Chem. Phys. 120, 9524 (2004).
20. M. Masia, H. Forbert, and D. Marx, J. Phys. Chem. A 111, 12181 (2007).
21. S. Re, Y. Osamura, Y. Suzuki, and H. F. Schaefer, J. Chem. Phys. 109, 973 (1998).
22. G. M. Chaban, R. B. Gerber, and K. C. Janda, J. Phys. Chem. A 105, 8323 (2001).
23. A. Gutberlet, G. Schwaab, O. Birer, M. Masia, A. Kaczmarek, H. Forbert, M. Havenith, and D. Marx, Science 324, 1545 (2009).
24. M. Ortlieb, O. Birer, M. Letzner, G. W. Schwaab, and M. Havenith, J. Phys. Chem. A 111, 12192 (2007).
25. D. Skvortsov, S. J. Lee, M. Y. Choi, and A. F. Vilesov, J. Phys. Chem. A 113, 7360 (2009).
26. Z. Kisiel, B. A. Pietrewicz, P. W. Fowler, A. C. Legon, and E. Steiner, J. Phys. Chem. A 104, 6970 (2000).
27. A. C. Legon and L. C. Willoughby, Chem. Phys. Lett. 95, 449 (1983).
28. M. Weimann, M. Fárník, and M. A. Suhm, Phys. Chem. Chem. Phys. 4, 3933 (2002).
29. M. Fárník, M. Weimann, and M. A. Suhm, J. Chem. Phys. 118, 10120 (2003).
30. A. J. Huneycutt, R. J. Stickland, F. Hellberg, and R. J. Saykally, J. Chem. Phys. 118, 1221 (2003).
31. B. S. Ault and G. C. Pimentel, J. Phys. Chem. 77, 57 (1973).
32. G. P. Ayers and A. D. E. Pullin, Spectrochim. Acta., Part A 32, 1641 (1976).
33. A. Schriver, B. Silvi, D. Maillard, and J. P. Perchard, J. Phys. Chem. 81, 2095 (1977).
34. A. J. Barnes, J. Mol. Struct. 60, 343 (1980).
35. C. Amirand and D. Maillard, J. Mol. Struct. 176, 181 (1988).
36. M. J. Packer and D. C. Clary, J. Phys. Chem. 99, 14323 (1995).
37. E. M. Cabaleiro-Lago, J. M. Hermida-Ramon, and J. Rodriguez-Otero, J. Chem. Phys. 117, 3160 (2002).
38. M. E. Alikhani and B. Silvi, Phys. Chem. Chem. Phys. 5, 2494 (2003).
39. R. P. de Tudela, P. Barragan, R. Prosmiti, P. Villarreal, and G. Delgado-Barrio, J. Phys. Chem. A 115, 2483 (2011).
40. P. H. Acioli, Z. Xie, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 128, 104318 (2008).
41. M. E. Tuckerman, Science 275, 817 (1997).
42. A. B. McCoy, B. J. Braams, A. Brown, X. Huang, Z. Jin, and J. M. Bowman, J. Phys. Chem. A 108, 4991 (2004).
43. G. Knizia, T. B. Adler, and H. J. Werner, J. Chem. Phys. 130, 054104 (2009).
44. H.-J. Werner, P. J. Knowles, F. R. Manby, M. Schütz et al., MOLPRO, version 2010.1, a package of ab initio programs, 2010, see
45. B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009).
46.See supplementary material at for details on the potential fitting procedure and precision, stationary point geometries and frequencies, and a plot of the dissociation coordinate. [Supplementary Material]
47. S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).
48. D. Feller, J. Chem. Phys. 98, 7059 (1993).
49. I. Kosztin, B. Faber, and K. Schulten, Am. J. Phys. 64, 633 (1996).
50. A. B. McCoy, Int. Rev. Phys. Chem. 25, 77 (2006).
51. H. Partridge and D. W. Schwenke, J. Chem. Phys. 106, 4618 (1997).
52. D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992).
53. Y. Wang and J. M. Bowman, J. Chem. Phys. 134, 154510 (2011).

Data & Media loading...


Article metrics loading...



We report a global, full-dimensional, ab initio potential energy surface describing the HCl–H2O dimer. The potential is constructed from a permutationally invariant fit, using Morse-like variables, to over 44 000 CCSD(T)-F12b/aug-cc-pVTZ energies. The surface describes the complex and dissociated monomers with a total RMS fitting error of 24 cm−1. The normal modes of the minima, low-energy saddle point and separated monomers, the double minimum isomerization pathway and electronic dissociation energy are accurately described by the surface. Rigorous quantum mechanical diffusion Monte Carlo (DMC) calculations are performed to determine the zero-point energy and wavefunction of the complex and the separated fragments. The calculated zero-point energies together with a D e value calculated from CCSD(T) with a complete basis set extrapolation gives a D 0 value of 1348 ± 3 cm−1, in good agreement with the recent experimentally reported value of 1334 ± 10 cm−1[B. E. Casterline, A. K. Mollner, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A114, 9774 (Year: 2010)10.1021/jp102532m]. Examination of the DMC wavefunction allows for confident characterization of the zero-point geometry to be dominant at the C 2v double-well saddle point and not the C s global minimum. Additional support for the delocalized zero-point geometry is given by numerical solutions to the 1D Schrödinger equation along the imaginary-frequency out-of-plane bending mode, where the zero-point energy is calculated to be 52 cm−1 above the isomerization barrier. The D 0 of the fully deuterated isotopologue is calculated to be 1476 ± 3 cm−1, which we hope will stand as a benchmark for future experimental work.


Full text loading...

This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Scitation|Communication: A new ab initio potential energy surface for HCl–H2O, diffusion Monte Carlo calculations of D0 and a delocalized zero-point wavefunction