1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Structure and dynamics of supercooled water in neutral confinements
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/13/10.1063/1.4798217
1.
1. M. Alcoutlabi and G. B. McKenna, J. Phys. Condens. Matter 17, R461 (2005).
http://dx.doi.org/10.1088/0953-8984/17/15/R01
2.
2. C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak, K. E. Gubbins, R. Radhakrishnan, and M. Sliwinska-Bartowiak, J. Phys. Condens. Matter 18, R15 (2006).
http://dx.doi.org/10.1088/0953-8984/18/6/R01
3.
3. M. Vogel, Eur. Phys. J. Spec. Top. 189, 47 (2010).
http://dx.doi.org/10.1140/epjst/e2010-01309-9
4.
4. R. Richert, Annu. Rev. Phys. Chem. 62, 65 (2011).
http://dx.doi.org/10.1146/annurev-physchem-032210-103343
5.
5. W. H. Thompson, Annu. Rev. Phys. Chem. 62, 599 (2011).
http://dx.doi.org/10.1146/annurev-physchem-032210-103330
6.
6. S. Takahara, M. Nakano, S. Kittaka, Y. Kuroda, T. Mori, H. Hamano, and T. Yamaguchi, J. Phys. Chem. B 103, 5814 (1999).
http://dx.doi.org/10.1021/jp984136j
7.
7. J. Deschamps, F. Audonnet, N. Brodie-Linder, M. Schoeffel, and C. Alba-Simionesco, Phys. Chem. Chem. Phys. 12, 1440 (2010).
http://dx.doi.org/10.1039/b920816j
8.
8. M. Erko, G. H. Findenegg, N. Cade, A. G. Michette, and O. Paris, Phys. Rev. B 84, 104205 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.104205
9.
9. K. Yoshida, T. Yamaguchi, S. Kittaka, M.-C. Bellissent-Funel, and P. Fouquet, J. Chem. Phys. 129, 054702 (2008).
http://dx.doi.org/10.1063/1.2961029
10.
10. A. Faraone, L. Liu, C.-Y. Mou, C.-W. Wen, and S.-H. Chen, J. Chem. Phys. 121, 10843 (2004).
http://dx.doi.org/10.1063/1.1832595
11.
11. L. Liu, S.-H. Chen, A. Faraone, C.-W. Wen, and C.-Y. Mou, Phys. Rev. Lett. 95, 117802 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.117802
12.
12. J.-M. Zanotti, M.-C. Bellissent-Funel, and S.-H. Chen, Europhys. Lett. 71, 91 (2005).
http://dx.doi.org/10.1209/epl/i2004-10529-2
13.
13. F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, U. Wanderlingh, L. Liu, C.-Y. Mou, and S.-H. Chen, J. Chem. Phys. 124, 161102 (2006).
http://dx.doi.org/10.1063/1.2193159
14.
14. J. Swenson, H. Jansson, and R. Bergman, Phys. Rev. Lett. 96, 247802 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.247802
15.
15. S. Pawlus, S. Khodadadi, and A. P. Sokolov, Phys. Rev. Lett. 100, 108103 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.108103
16.
16. M. Vogel, Phys. Rev. Lett. 101, 225701 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.225701
17.
17. S. Cerveny, A. Alegria, and J. Colmenero, Phys. Rev. E 77, 031803 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.031803
18.
18. W. Doster, S. Busch, A. M. Gaspar, M.-S. Appavou, J. Wuttke, and W. Doster, Phys. Rev. Lett. 104, 098101 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.098101
19.
19. J. Swenson and J. Teixeira, J. Chem. Phys. 132, 014508 (2010).
http://dx.doi.org/10.1063/1.3285286
20.
20. S. Capaccioli, K. L. Ngai, S. Ancherbak, P. A. Rolla, and N. Shinyashiki, J. Non-Cryst. Solids 357, 641 (2011).
http://dx.doi.org/10.1016/j.jnoncrysol.2010.07.054
21.
21. D. Liu, Y. Zhang, C.-C. Chen, C.-Y. Mou, P. H. Poole, and S.-H. Chen, Proc. Natl. Acad. Sci. U.S.A. 104, 9570 (2007).
http://dx.doi.org/10.1073/pnas.0701352104
22.
22. R. Mancinelli, F. Bruni, and M. A. Ricci, J. Phys. Chem. Lett. 1, 1277 (2010).
http://dx.doi.org/10.1021/jz100236j
23.
23. A. K. Soper, J. Phys.: Condens. Matter 24, 064107 (2012).
http://dx.doi.org/10.1088/0953-8984/24/6/064107
24.
24. J. Jelassi, T. Grosz, I. Bako, M.-C. Bellissent-Funel, J. C. Dore, H. L. Castricum, and R. Sridi-Dorbez, J. Chem. Phys. 134, 064509 (2011).
http://dx.doi.org/10.1063/1.3530584
25.
25. A. Faraone, K.-H. Liu, C.-Y. Mou, Y. Zhang, and S.-H. Chen, J. Chem. Phys. 130, 134512 (2009).
http://dx.doi.org/10.1063/1.3097800
26.
26. N. Giovambattista, P. J. Rossky, and P. G. Debenedetti, Annu. Rev. Phys. Chem. 63, 179 (2012).
http://dx.doi.org/10.1146/annurev-physchem-032811-112007
27.
27. I. Brovchenko and A. Oleinikova, J. Chem. Phys. 126, 214701 (2007).
http://dx.doi.org/10.1063/1.2734963
28.
28. N. Giovambattista, P. J. Rossky, and P. G. Debenedetti, J. Phys. Chem. B 113, 13723 (2009).
http://dx.doi.org/10.1021/jp9018266
29.
29. J. Wang, A. G. Kalinichev, and R. J. Kirkpatrick, Geochim. Cosmochim. Acta 70, 562 (2006).
http://dx.doi.org/10.1016/j.gca.2005.10.006
30.
30. A. Lerbret, G. Lelong, P. E. Mason, M.-L. Saboungi, and J. W. Brady, Food Biophys. 6, 233 (2011).
http://dx.doi.org/10.1007/s11483-010-9191-y
31.
31. P. Gallo, M. Rovere, and S.-H. Chen, J. Phys. Chem. Lett. 1, 729 (2010).
http://dx.doi.org/10.1021/jz9003125
32.
32. P. Gallo, M. Rovere, and S.-H. Chen, J. Phys.: Condens. Matter 22, 284102 (2010).
http://dx.doi.org/10.1088/0953-8984/22/28/284102
33.
33. P. Gallo, M. Rovere, and E. Spohr, Phys. Rev. Lett. 85, 4317 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.4317
34.
34. P. Gallo, M. Rovere, and S.-H. Chen, J. Phys.: Condens. Matter 24, 064109 (2012).
http://dx.doi.org/10.1088/0953-8984/24/6/064109
35.
35. J. C. Rasaiah, S. Garde, and G. Hummer, Annu. Rev. Phys. Chem. 59, 713 (2008).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093815
36.
36. P. Scheidler, W. Kob, and K. Binder, Europhys. Lett. 52, 277 (2000).
http://dx.doi.org/10.1209/epl/i2000-00435-1
37.
37. P. Scheidler, W. Kob, and K. Binder, Europhys. Lett. 59, 701 (2002).
http://dx.doi.org/10.1209/epl/i2002-00182-9
38.
38. P. Scheidler, W. Kob, and K. Binder, Eur. Phys. J. E 12, 5 (2003).
http://dx.doi.org/10.1140/epje/i2003-10041-7
39.
39. P. Scheidler, W. Kob, and K. Binder, J. Phys. Chem. B 108, 6673 (2004).
http://dx.doi.org/10.1021/jp036593s
40.
40. L. Berthier and W. Kob, Phys. Rev. E 85, 011102 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.011102
41.
41. W. Kob, S. Roldan-Vargas, and L. Berthier, Nat. Phys. 8, 164 (2012).
http://dx.doi.org/10.1038/NPHYS2133
42.
42. K. Watanabe, T. Kawasaki, and H. Tanaka, Nature Mater. 10, 512 (2011).
http://dx.doi.org/10.1038/nmat3034
43.
43. E. Lindahl, B. Hess, and D. van der Spoel, J. Mol. Model. 7, 306 (2001).
http://dx.doi.org/10.1007/s008940100045
44.
44. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).
http://dx.doi.org/10.1021/j100308a038
45.
45. S. Nosé, Mol. Phys. 52, 255 (1984);
http://dx.doi.org/10.1080/00268978400101201
45.W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
46.
46. M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).
http://dx.doi.org/10.1063/1.328693
47.
47. R. Shevchuk and F. Rao, J. Chem. Phys. 137, 036101 (2012).
http://dx.doi.org/10.1063/1.4737867
48.
48. J. R. Errington and P. G. Debenedetti, Nature (London) 409, 318 (2001).
http://dx.doi.org/10.1038/35053024
49.
49. W. Götze and L. Sjögren, Rep. Prog. Phys. 55, 241 (1992).
http://dx.doi.org/10.1088/0034-4885/55/3/001
50.
50. C. A. Angell, J. Phys. Chem. Solids 49, 863 (1988).
http://dx.doi.org/10.1016/0022-3697(88)90002-9
51.
51. F. W. Starr, F. Sciortino, and H. E. Stanley, Phys. Rev. E 60, 6757 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.6757
52.
52. S. Gradmann, P. Medick, and E. Rössler, J. Phys. Chem. B 113, 8443 (2009).
http://dx.doi.org/10.1021/jp9027518
53.
53. V. Lubchenko and P. G. Wolynes, Annu. Rev. Phys. Chem. 58, 235 (2007).
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104653
54.
54. V. Krakoviak, Phys. Rev. E 75, 031503 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.031503
55.
55. V. Krakoviak, Phys. Rev. E 79, 061501 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.061501
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/13/10.1063/1.4798217
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Density profiles characterizing the distribution of the oxygen atoms of confined water across the pores at various temperatures. The oxygen density ρ O is shown as a function of the distance from the pore axis, (x 2 + y 2)1/2, for a pore radius of R = 2.5 nm. For all temperatures, the values are normalized by the oxygen densities in the bulk. For the sake of clarity of presentation, the density profiles at T = 200 K and T = 240 K are vertically shifted by 0.4 and 0.2, respectively.

Image of FIG. 2.

Click to view

FIG. 2.

Tetrahedral order parameter Q of bulk water and confined water. The pore radii amount to R = 0.5 nm, R = 1.5 nm, and R = 2.5 nm. For the latter pore system, the tetrahedral order parameter is separately determined for water molecules that reside in the immediate vicinity of the pore walls, i.e., exhibit a distance d = 0.15–0.20 nm to the wall.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Incoherent intermediate scattering functions S q (t) for the oxygen atoms of bulk water at various temperatures. (b) Same data on a scaled time axis t1/e. In panel (a), KWW fits (β = 0.74) are shown as solid lines.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Incoherent intermediate scattering functions S q (t) for the oxygen atoms of confined water at various temperatures. The pore radius is R = 2.5 nm. (b) Same data on a scaled time axis t1/e. In panel (a), the solid lines are KWW functions (200 K: β = 0.53, 210 K: β = 0.51), as obtained from fits at t < τ1/e.

Image of FIG. 5.

Click to view

FIG. 5.

Temperature dependence of the correlation times τ1/e for bulk water and confined water. For confined water, we separately study the dynamical behaviors of molecules residing at different positions across the pore. In detail, we distinguish between oxygen atoms that have the indicated distances d (in nm) to the pore walls. The solid line is a VFT fit of the results for bulk water, yielding B = 451 K and T 0 = 156 K.

Image of FIG. 6.

Click to view

FIG. 6.

Dependence of water dynamics on the water position within a pore with radius R = 2.5 nm. We compare incoherent intermediate scattering functions for oxygen atoms residing at the indicated distances d (in nm) to the pore wall at t = 0. Results for T = 230 K are shown.

Image of FIG. 7.

Click to view

FIG. 7.

Position-resolved analysis of water dynamics in a pore with a radius of R = 2.5 nm at various temperatures: (a) Incoherent intermediate scattering functions S q (t) of oxygen atoms residing at a distance d = 0.15–0.20 nm from the pore wall at t = 0. (b) Same data on a scaled time axis t1/e.

Image of FIG. 8.

Click to view

FIG. 8.

Position-resolved analysis of water dynamics in a pore with a radius of R = 2.5 nm at various temperatures: (a) Incoherent intermediate scattering functions S q (t) of oxygen atoms residing at a distance d = 0.95–1.00 nm from the pore wall at t = 0. (b) Same data on a scaled time axis t1/e.

Image of FIG. 9.

Click to view

FIG. 9.

Correlation times τ1/e of confined water as a function of the distance d to the pore wall. Results for various temperatures and pore radii of R = 0.5 nm (open symbols) and R = 2.5 nm (solid symbols) are shown.

Image of FIG. 10.

Click to view

FIG. 10.

Logarithmic correlation times, ln τ1/e, of confined water as a function of the distance d to the pore wall, as obtained from taking the logarithm of the data for R = 2.5 nm in Fig. 9 . The solid lines are fits to Eq. (4) . The inset shows the temperature dependence of the fit parameter ξ, which is a measure for the range of the wall effect.

Image of FIG. 11.

Click to view

FIG. 11.

Self part of the van Hove correlation function for the oxygen atoms of water in a pore with a radius of R = 2.5 nm at 200 K. Main graph: Time evolution for water molecules at the pore walls (d = 0.15–0.20 nm). Inserted graph: Enlarged view of the region of the secondary maxima. Results for interfacial water (d = 0.15–0.20 nm) and core water (d = 1.50–1.55 nm) are shown for comparable times t ≈ τ1/e in both regions. The dashed lines mark the positions of the first and second oxygen next neighbor peaks in the radial distribution function of SPC/E water.

Loading

Article metrics loading...

/content/aip/journal/jcp/138/13/10.1063/1.4798217
2013-04-01
2014-04-23

Abstract

We perform molecular dynamics simulations to study the structure and dynamics of liquid water in neutral nanopores, which are generated by pinning a suitable subset of water molecules in an equilibrium configuration of a bulk system. It is found that such neutral confinement does not disturb the structure of water, in particular, the local tetrahedral order, while it imposes a pronounced spatial inhomogeneity on the dynamics of water. Specifically, when the pore wall is approached, hopping motion sets in and water dynamics slows down. We show that the logarithm of the correlation time is an exponential function of the distance to the wall, indicating a tremendous gradient of water mobility across the confinement. Upon cooling, the length scale associated with this exponential distance dependence and, thus, the range of the wall effect increases, at least down to the critical temperature of mode coupling theory, T c . Also, the temperature dependence of water dynamics varies across the pore, i.e., fragility is high in the pore center, while it is low near the pore wall. Due to all these effects, time-temperature superposition is violated. Our observations for a neutral confinement reveal that specific interactions at hydrophilic or hydrophobic walls are not the main cause of spatially inhomogeneous dynamics of confined water. In view of similarities with the behavior of Lennard-Jones liquids in neutral confinements, one may rather speculate that the effects observed for confined water are general and result from the existence of a static contribution to the energy landscape, which is imprinted by an immobile environment.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/13/1.4798217.html;jsessionid=7svbida1p6vgs.x-aip-live-06?itemId=/content/aip/journal/jcp/138/13/10.1063/1.4798217&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Structure and dynamics of supercooled water in neutral confinements
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/13/10.1063/1.4798217
10.1063/1.4798217
SEARCH_EXPAND_ITEM