Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/138/13/10.1063/1.4798706
1.
1. J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).
http://dx.doi.org/10.1103/PhysRevLett.51.1884
2.
2. L. J. Sham and M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983).
http://dx.doi.org/10.1103/PhysRevLett.51.1888
3.
3. A. J. Cohen, P. Mori-Sanchez, and W. Yang, Chem. Rev. 112, 289 (2012).
http://dx.doi.org/10.1021/cr200107z
4.
4. J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).
http://dx.doi.org/10.1103/PhysRevLett.49.1691
5.
5. A. D. Becke, J. Chem. Phys. 98, 1372 (1993).
http://dx.doi.org/10.1063/1.464304
6.
6. J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).
http://dx.doi.org/10.1063/1.472933
7.
7. M. A. L. Marques, J. Vidal, M. J. T. Oliveira, L. Reining, and S. Botti, Phys. Rev. B 83, 035119 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.035119
8.
8. D. M. Bylander and L. Kleinman, Phys. Rev. B 41, 7868 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7868
9.
9. A. Seidl, A. Görling, P. Vogl, and J. A. Majewski, Phys. Rev. B 53, 3764 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.3764
10.
10. R. Asahi, W. Mannstadt, and A. J. Freeman, Phys. Rev. B 59, 7486 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.7486
11.
11. X. Zheng, A. J. Cohen, P. Mori-Sanchez, X. Hu, and W. Yang, Phys. Rev. Lett. 107, 026403 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.026403
12.
12. R. Baer, E. Livshits, and U. Salzner, Annu. Rev. Phys. Chem. 61, 85 (2010).
http://dx.doi.org/10.1146/annurev.physchem.012809.103321
13.
13. L. Hedin and S. Lundqvist, Solid State Phys. 23, 1 (1970).
http://dx.doi.org/10.1016/S0081-1947(08)60615-3
14.
14. F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).
http://dx.doi.org/10.1088/0034-4885/61/3/002
15.
15. H. Jiang, Acta Phys.-Chim. Sin. 26, 1017 (2010).
http://dx.doi.org/10.3866/PKU.WHXB20100413
16.
16. R. W. Godby, M. Schlüter, and L. J. Sham, Phys. Rev. B 37, 10159 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.10159
17.
17. E. Engel, in A Primer in Density Functional Theory, edited by C. Fiohais, F. Nogueira, and M. Marques (SpringerVerlag, Berlin/Heidelberg, 2003), Chap. 2, pp. 56143.
18.
18. M. Grüning, A. Marini, and A. Rubio, J. Chem. Phys. 124, 154108 (2006).
http://dx.doi.org/10.1063/1.2189226
19.
19. S. Kümmel and L. Kronik, Rev. Mod. Phys. 80, 3 (2008).
http://dx.doi.org/10.1103/RevModPhys.80.3
20.
20. J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976).
http://dx.doi.org/10.1103/PhysRevA.14.36
21.
21. H. Jiang and E. Engel, J. Chem. Phys. 123, 224102 (2005).
http://dx.doi.org/10.1063/1.2128674
22.
22. M. Städele, J. A. Majewski, P. Vogl, and A. Görling, Phys. Rev. Lett. 79, 2089 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.2089
23.
23. E. Engel and R. N. Schmid, Phys. Rev. Lett. 103, 036404 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.036404
24.
24. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.226401
25.
25. A. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006).
http://dx.doi.org/10.1063/1.2213970
26.
26. D. Koller, F. Tran, and P. Blaha, Phys. Rev. B 85, 155109 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.155109
27.
27. F. Tran, P. Blaha, and K. Schwarz, J. Phys.: Condens. Matter 19, 196208 (2007).
http://dx.doi.org/10.1088/0953-8984/19/19/196208
28.
28. A. D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989).
http://dx.doi.org/10.1103/PhysRevA.39.3761
29.
29. D. Koller, F. Tran, and P. Blaha, Phys. Rev. B 83, 195134 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195134
30.
30. D. J. Singh, Phys. Rev. B 82, 205102 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.205102
31.
31. W. Feng, D. Xiao, Y. Zhang, and Y. Yao, Phys. Rev. B 82, 235121 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.235121
32.
32. W. Hetaba, P. Blaha, F. Tran, and P. Schattschneider, Phys. Rev. B 85, 205108 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.205108
33.
33. A. P. Gaiduk and V. N. Staroverov, J. Chem. Phys. 133, 101104 (2010).
http://dx.doi.org/10.1063/1.3483464
34.
34. M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.5390
35.
35. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
36.
36. F. Tran, Phys. Lett. A 376, 879 (2012).
http://dx.doi.org/10.1016/j.physleta.2012.01.022
37.
37. M. Shishkin and G. Kresse, Phys. Rev. B 75, 235102 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.235102
38.
38. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001).
39.
39. H. Jiang, J. Chem. Phys. 134, 204705 (2011).
http://dx.doi.org/10.1063/1.3594205
40.
40. H. Jiang, J. Phys. Chem. C 116, 7664 (2012).
http://dx.doi.org/10.1021/jp300079d
41.
41. R. Zimmermann, P. Steiner, R. Claessen, F. Reinert, S. Hüfner, P. Blaha, and P. Dufek, J. Phys.: Condens. Matter 11, 1657 (1999).
http://dx.doi.org/10.1088/0953-8984/11/7/002
42.
42. L. Y. Isseroff and E. A. Carter, Phys. Rev. B 85, 235142 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.235142
43.
43. G. Martin, A. Botchkarev, A. Rockett, and H. Markoc, Appl. Phys. Lett. 68, 2541 (1996).
http://dx.doi.org/10.1063/1.116177
44.
44. L. Ley, R. A. Pollak, F. R. McFeely, S. P. Kowalczyk, and D. A. Shirley, Phys. Rev. B 9, 600 (1974).
http://dx.doi.org/10.1103/PhysRevB.9.600
45.
45. A. Fleszar and W. Hanke, Phys. Rev. B 71, 045207 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.045207
46.
46. A. V. Prokofiev, A. I. Shelykh, and B. T. Melekh, J. Alloys Compd. 242, 41 (1996).
http://dx.doi.org/10.1016/0925-8388(96)02293-1
47.
47. H. Jiang, R. Gomez-Abal, P. Rinke, and M. Scheffler, Phys. Rev. Lett. 102, 126403 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.126403
48.
48. W.-D. Schneider, B. Delley, E. Wuilloud, J.-M. Imer, and Y. Baer, Phys. Rev. B 32, 6819 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.6819
49.
49. H. Jiang, P. Rinke, and M. Scheffler, Phys. Rev. B 86, 125115 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.125115
50.
50. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.943
51.
51. F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, and A. I. Lichtenstein, Phys. Rev. B 70, 195104 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.195104
52.
52. G.-M. Rignanese, in APS March Meeting, 2013, see http://meetings.aps.org/Meeting/MAR13/Event/188243.
53.
53. J. Pascual, J. Camassel, and H. Mathieu, Phys. Rev. Lett. 39, 1490 (1977).
http://dx.doi.org/10.1103/PhysRevLett.39.1490
54.
54. Y. Tezuka, S. Shin, T. Ishii, T. Ejima, S. Suzuki, and S. Sato, J. Phys. Soc. Jpn. 63, 347 (1994).
http://dx.doi.org/10.1143/JPSJ.63.347
55.
55. M. Landmann, E. Rauls, and W. G. Schmidt, J. Phys.: Condens. Matter 24, 195503 (2012).
http://dx.doi.org/10.1088/0953-8984/24/19/195503
56.
56. W. Kang and M. S. Hybertsen, Phys. Rev. B 82, 085203 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.085203
57.
57. L. Chiodo, J. M. Garcia-Lastra, A. Iacomino, S. Ossicini, J. Zhao, H. Petek, and A. Rubio, Phys. Rev. B 82, 045207 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.045207
58.
58. H. Tang, F. Levy, H. Berger, and P. E. Schmid, Phys. Rev. B 52, 7771 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.7771
59.
59. A. Mattsson and L. Österlund, J. Phys. Chem. C 114, 14121 (2010).
http://dx.doi.org/10.1021/jp103263n
60.
60. L. G. J. de Haart, A. J. de Vries, and G. Blass, Mater. Res. Bull. 19, 817 (1984).
http://dx.doi.org/10.1016/0025-5408(84)90042-4
61.
61. E. A. V. Ferri, J. C. Sczancoski, L. S. Cavalcante, E. C. Paris, J. W. M. Espinosa, A. T. de Figueiredo, P. S. Pizani, V. R. Mastelaro, J. A. Varela, and E. Longo, Mater. Chem. Phys. 117, 192 (2009).
http://dx.doi.org/10.1016/j.matchemphys.2009.05.042
62.
62. H. Mizoguchi, K. Ueda, M. Orita, S.-C. Moon, K. Kajihara, M. Hirano, and H. Hosono, Mater. Res. Bull. 37, 2401 (2002).
http://dx.doi.org/10.1016/S0025-5408(02)00974-1
63.
63. K. van Benthem and C. Elsässer, J. Appl. Phys. 90, 6156 (2001).
http://dx.doi.org/10.1063/1.1415766
64.
64. S. H. Wemple, Phys. Rev. B 2, 2679 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.2679
65.
65. R. Abe, M. Higashi, K. Sayama, Y. Abe, and H. Sugihara, J. Phys. Chem. B 110, 2219 (2006).
http://dx.doi.org/10.1021/jp0552933
66.
66. V. R. Reddy, D. W. Hwang, and J. S. Lee, Catal. Lett. 90, 39 (2003).
http://dx.doi.org/10.1023/A:1025812125852
67.
67. X. Chen, S. Shen, L. Guo, and S. S. Mao, Chem. Rev. 110, 6503 (2010).
http://dx.doi.org/10.1021/cr1001645
68.
68. F. E. Osterloh, Chem. Mater. 20, 35 (2008).
http://dx.doi.org/10.1021/cm7024203
69.
69. B. A. Wechsler and R. B. von Dreele, Acta Crystallogr., Sect. B 45, 542 (1989).
http://dx.doi.org/10.1107/S010876818900786X
70.
70. K. S. Knight, J. Alloys Compd. 509, 6337 (2011).
http://dx.doi.org/10.1016/j.jallcom.2011.03.014
71.
71. J. Hutton and R. J. Nelmes, J. Phys. C 14, 1713 (1981).
http://dx.doi.org/10.1088/0022-3719/14/12/006
72.
72. B. C. Frazer, H. R. Danner, and R. Pepinsky, Phys. Rev. 100, 745 (1955).
http://dx.doi.org/10.1103/PhysRev.100.745
73.
73. K. Scheunemann and M. Mueller Buschbaum, J. Inorg. Nucl. Chem. 37, 1879 (1975).
http://dx.doi.org/10.1016/0022-1902(75)80906-7
74.
74. B. Zhu and K. Tang, Acta Crystallogr., Sect. E 67, i26 (2011).
http://dx.doi.org/10.1107/S1600536811006891
75.
75. H. Wang, F. Wu, and H. Jiang, J. Phys. Chem. C 115, 16180 (2011).
http://dx.doi.org/10.1021/jp2047294
76.
76. F. Bechstedt, K. Seino, P. H. Hahn, and W. G. Schmidt, Phys. Rev. B 72, 245114 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.245114
77.
77. F. Giustino, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 105, 265501 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.265501
78.
78. J. Bhosale, A. K. Ramdas, A. Burger, A. Munoz, A. H. Romero, M. Cardona, R. Lauck, and R. K. Kremer, Phys. Rev. B 86, 195208 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.195208
79.
79. J. A. Camargo-Martinez and R. Baquero, Phys. Rev. B 86, 195106 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.195106
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/13/10.1063/1.4798706
Loading
/content/aip/journal/jcp/138/13/10.1063/1.4798706
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/13/10.1063/1.4798706
2013-04-04
2016-02-07

Abstract

The semi-local Becke-Johnson (BJ) exchange-correlation potential and its modified form proposed by Tran and Blaha (TB-mBJ) have attracted a lot of interest recently because of the surprisingly accurate band gaps they can deliver for many semiconductors and insulators. In this work, we have investigated the performance of the TB-mBJ potential for the description of electronic band structures in a comprehensive set of semiconductors and insulators. We point out that a perturbative use of the TB-mBJ potential can give overall better results. By investigating a set of IIB-VI and III-V semiconductors, we point out that although the TB-mBJ approach can describe the band gap of these materials quite well, the binding energies of semi-core d-states in these materials deviate strongly from experiment. The difficulty of the TB-mBJ potential to describe the localized states is likely the cause for the fact that the electronic band structures of Cu 2O and La2O3 are still poorly described. Based on these observations, we propose to combine the TB-mBJ approach with the Hubbard U correction for localized d/f states, which is able to provide overall good descriptions for both the band gaps and semi-core states binding energies. We further apply the approach to calculate the band gaps of a set of Ti(IV)-oxides, many of which have complicated structures so that the more advanced methods like GW are expensive to treat directly. An overall good agreement with experiment is obtained, which is remarkable considering its little computational efforts compared to GW.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/13/1.4798706.html;jsessionid=4rccegtf8mq89.x-aip-live-06?itemId=/content/aip/journal/jcp/138/13/10.1063/1.4798706&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd