1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: A full solution of the annihilation reaction A + B → ∅ based on time-subordination
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/13/10.1063/1.4800799
1.
1. D. Toussaint and F. Wilczek, J. Chem. Phys. 78, 2642 (1983).
http://dx.doi.org/10.1063/1.445022
2.
2. K. Kang and S. Redner, Phys. Rev. Lett. 52, 955 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.955
3.
3. J. Murray, Mathematical Biology: I. An Introduction (Springer, 2002), Vol. 2.
4.
4. J. Fort and V. Méndez, Phys. Rev. E 60, 5894 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.5894
5.
5. D. Becherer and M. Schweizer, Ann. Appl. Probab. 15, 1111 (2005).
http://dx.doi.org/10.1214/105051604000000846
6.
6. C.-Z. Li and K.-G. Löfgren, J. Envir. Econom. Manage. 40, 236 (2000).
http://dx.doi.org/10.1006/jeem.1999.1121
7.
7. F. Schweitzer, Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences (Springer, 2007).
8.
8. A. A. Keller, J. Mech. Behav. Mater. 21, 123 (2012).
http://dx.doi.org/10.1515/jmbm-2012-0024
9.
9. M. A. Fields, “Modeling large scale troop movement using reaction diffusion equations,” Tech. Rep. DTIC Document, 1993.
10.
10. R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations (Wiley, 2004).
11.
11. K. Kang and S. Redner, Phys. Rev. A 32, 435 (1985).
http://dx.doi.org/10.1103/PhysRevA.32.435
12.
12. P. de Anna, T. Le Borgne, M. Dentz, D. Bolster, and P. Davy, J. Chem. Phys. 135, 174104 (2011).
http://dx.doi.org/10.1063/1.3655895
13.
13. O. Bénichou, C. Chevalier, J. Klafter, B. Meyer, and R. Voituriez, Nat. Chem. 2, 472 (2010).
http://dx.doi.org/10.1038/nchem.622
14.
14. A. M. Tartakovsky, D. M. Tartakovsky, and P. Meakin, Phys. Rev. Lett. 101, 044502 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.044502
15.
15. P. K. Ghosh, F. Marchesoni, S. E. Savel'ev, and F. Nori, Phys. Rev. Lett. 104, 020601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.020601
16.
16. P. K. Ghosh, P. Hänggi, F. Marchesoni, S. Martens, F. Nori, L. Schimansky-Geier, and G. Schmid, Phys. Rev. E 85, 011101 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.011101
17.
17. A. Tartakovsky, P. de Anna, T. Le Borgne, A. Balter, and D. Bolster, Water Resour. Res. 48, W02526, doi:10.1029/2011WR010720 (2012).
http://dx.doi.org/10.1029/2011WR010720
18.
18. G. Zumofen, J. Klafter, and M. F. Schlesinger, Phys. Rev. Lett. 77, 2830 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.2830
19.
19. Anomalous Transport, edited by R. Klages, G. Radons, and I. Sokolov, (Wiley-VCH, 2008).
20.
20. E. Monson and R. Kopelman, Phys. Rev. Lett. 85, 666 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.666
21.
21. E. Monson and R. Kopelman, Phys. Rev. E 69, 021103 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.021103
22.
22. C. M. Gramling, C. F. Harvey, and L. C. Meigs, Environ. Sci. Technol. 36, 2508 (2002).
http://dx.doi.org/10.1021/es0157144
23.
23. F. Ait-Chaalal, M. S. Bourqui, and P. Bartello, Phys. Rev. E 85, 046306 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.046306
24.
24. D. Bolster, P. de Anna, D. A. Benson, and A. M. Tartakovsky, Adv. Water Resour. 37, 86 (2012).
http://dx.doi.org/10.1016/j.advwatres.2011.11.005
25.
25. M. von Smoluchowski, Z. Phys. Chem. 92, 124 (1917).
26.
26. F. C. Collins and G. E. Kimball, J. Colloid Sci. 4, 425 (1949).
http://dx.doi.org/10.1016/0095-8522(49)90023-9
27.
27. T. R. Waite, Phys. Rev. 107, 463 (1957).
http://dx.doi.org/10.1103/PhysRev.107.463
28.
28. D. T. Gillespie, J. Chem. Phys. 113, 297 (2000).
http://dx.doi.org/10.1063/1.481811
29.
29. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 1992).
30.
30. C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 3rd ed. (Springer, Berlin, 2004).
31.
31. A. A. Ovchinnikov and Y. B. Zeldovich, Chem. Phys. 28, 215 (1978).
http://dx.doi.org/10.1016/0301-0104(78)85052-6
32.
32. D. A. Benson and M. M. Meerschaert, Water Resour. Res. 44, W12201, doi:10.1029/2008WR007111 (2008).
http://dx.doi.org/10.1029/2008WR007111
33.
33. M. Bramson and J. L. Lebowitz, J. Stat. Phys. 65, 941 (1991).
http://dx.doi.org/10.1007/BF01049591
34.
34. W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, 1971), Vol. II.
35.
35. D. A. Benson and M. M. Meerschaert, Adv. Water Resour. 32, 532 (2009).
http://dx.doi.org/10.1016/j.advwatres.2009.01.002
36.
36. A. Molini, P. Talkner, G. Katul, and A. Porporato, Physica A 390, 1841 (2011).
http://dx.doi.org/10.1016/j.physa.2011.01.024
37.
37. D. Gillespie, J. Phys. Chem. 81, 2340 (1977).
http://dx.doi.org/10.1021/j100540a008
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/13/10.1063/1.4800799
Loading
/content/aip/journal/jcp/138/13/10.1063/1.4800799
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/13/10.1063/1.4800799
2013-04-04
2014-09-17

Abstract

The connection between the governing equations of chemical reaction and the underlying stochastic processes of particle collision and transformation have been developed previously along two end-member conditions: perfectly mixed and maximally diffusion-limited. The complete governing equation recognizes that in the perfectly mixed case, the particle (i.e., molecular or macro-particle) number state evolution is Markovian, but that spatial self-organization of reactants decreases the probability of reactant pairs finding themselves co-located. This decreased probability manifests itself as a subordination of the clock time: as reactant concentrations become spatially variable (unmixed), the time required for reactants to find each other increases and the random operational time that particles spend in the active reaction process is less than the clock time. For example, in the system A + B → ∅, a simple approximate calculation for the return time of a Brownian motion to a moving boundary allows a calculation of the operational time density, and the total solution is a subordination integral of the perfectly-mixed solution with a modified inverse Gaussian subordinator. The system transitions from the well-mixed solution to the asymptotic diffusion-limited solution that decays as t d/4 in d-dimensions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/13/1.4800799.html;jsessionid=3eaaf2rgl259f.x-aip-live-06?itemId=/content/aip/journal/jcp/138/13/10.1063/1.4800799&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: A full solution of the annihilation reaction A + B → ∅ based on time-subordination
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/13/10.1063/1.4800799
10.1063/1.4800799
SEARCH_EXPAND_ITEM