1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Ultrafast inter-ionic charge transfer of transition-metal complexes mapped by femtosecond X-ray powder diffraction
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/14/10.1063/1.4800223
1.
1. P. Gütlich and H. A. Goodwin, in Spin Crossover in Transition Metal Compounds I-III, edited by P. Gütlich and H. A. Goodwin (Springer, 2004), Vol. 233, pp. 147.
2.
2. I. Lawthers and J. J. McGarvey, J. Am. Chem. Soc. 106, 4280 (1984).
http://dx.doi.org/10.1021/ja00327a045
3.
3. S. Decurtins, P. Gutlich, K. M. Hasselbach, A. Hauser, and H. Spiering, Inorg. Chem. 24, 2174 (1985).
http://dx.doi.org/10.1021/ic00208a013
4.
4. P. Gütlich and A. Hauser, Coord. Chem. Rev. 97, 1 (1990).
http://dx.doi.org/10.1016/0010-8545(90)80076-6
5.
5. A. Hauser, Coord. Chem. Rev. 111, 275 (1991).
http://dx.doi.org/10.1016/0010-8545(91)84034-3
6.
6. A. Hauser, in Spin Crossover in Transition Metal Compounds I-III, Topics In Current Chemistry Vol. 234, edited by P. Gütlich and H. A. Goodwin (Springer, 2004), pp. 155198.
7.
7. E. Jeremy and J. K. McCusker, J. Am. Chem. Soc. 122, 4092 (2000).
http://dx.doi.org/10.1021/ja992436o
8.
8. E. A. Juban, A. L. Smeigh, J. E. Monat, and J. K. McCusker, Coord. Chem. Rev. 250, 1783 (2006).
http://dx.doi.org/10.1016/j.ccr.2006.02.010
9.
9. M. Khalil, M. A. Marcus, A. L. Smeigh, J. K. McCusker, H. H. W. Chong, and R. W. Schoenlein, J. Phys. Chem. A 110, 38 (2006).
http://dx.doi.org/10.1021/jp055002q
10.
10. A. L. Smeigh, M. Creelman, R. A. Mathies, and J. K. McCusker, J. Am. Chem. Soc. 130, 14105 (2008).
http://dx.doi.org/10.1021/ja805949s
11.
11. W. Gawelda, M. Johnson, F. M. F. De Groot, R. Abela, C. Bressler, and M. Chergui, J. Am. Chem. Soc. 128, 5001 (2006).
http://dx.doi.org/10.1021/ja054932k
12.
12. W. Gawelda, V.-T. Pham, M. Benfatto, Y. Zaushitsyn, M. Kaiser, D. Grolimund, S. L. Johnson, R. Abela, A. Hauser, C. Bressler, and M. Chergui, Phys. Rev. Lett. 98, 057401 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.057401
13.
13. C. Bressler, C. J. Milne, V.-T. Pham, A. ElNahhas, R. M. van der Veen, W. Gawelda, S. L. Johnson, P. Beaud, D. Grolimund, M. Kaiser, C. N. Borca, G. Ingold, R. Abela, and M. Chergui, Science 323, 489 (2009).
http://dx.doi.org/10.1126/science.1165733
14.
14. C. Consani, M. Prémont-Schwarz, A. ElNahhas, C. Bressler, F. van Mourik, A. Cannizzo, and M. Chergui, Angew. Chem. 121, 7320 (2009).
http://dx.doi.org/10.1002/ange.200902728
15.
15. A. Cannizzo, C. J. Milne, C. Consani, W. Gawelda, C. Bressler, F. van Mourik, and M. Chergui, Coord. Chem. Rev. 254, 2677 (2010).
http://dx.doi.org/10.1016/j.ccr.2009.12.007
16.
16. P. Guionneau, M. Marchivie, G. Bravic, J. Létard, and D. Chasseau, in Spin Crossover in Transition Metal Compounds I-III, Topics In Current Chemistry Vol. 234, edited by P. Gütlich and H. A. Goodwin (Springer, 2004), pp. 785786.
17.
17. J. F. Létard, P. Guionneau, and L. Goux-Capes, in Spin Crossover in Transition Metal Compounds I-III, Topics In Current Chemistry Vol. 235, edited by P. Gütlich and H. A. Goodwin (Springer, 2004), pp. 221249.
18.
18. A. Bousseksou, G. Molnár, L. Salmon, and W. Nicolazzi, Chem. Soc. Rev. 40, 3313 (2011).
http://dx.doi.org/10.1039/c1cs15042a
19.
19. K. Ichiyanagi, J. Hebert, L. Toupet, H. Cailleau, P. Guionneau, J. F. Létard, and E. Collet, Phys. Rev. B 73, 060408 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.060408
20.
20. D. Glijer, J. Hébert, E. Trzop, E. Collet, L. Toupet, H. Cailleau, G. S. Matouzenko, H. Z. Lazar, J. F. Létard, S. Koshihara, and M. Buron-Le Cointe, Phys. Rev. B 78, 134112 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.134112
21.
21. H. Cailleau, M. Lorenc, L. Guérin, M. Servol, E. Collet, and M. Buron-Le Cointe, Acta Crystallogr. Sec. A: Found. Crystallogr. 66, 189 (2010).
http://dx.doi.org/10.1107/S0108767309051046
22.
22. M. Lorenc, C. Balde, W. Kaszub, A. Tissot, N. Moisan, M. Servol, M. Buron-Le Cointe, H. Cailleau, P. Chasle, P. Czarnecki, M. L. Boillot, and E. Collet, Phys. Rev. B 85, 054302 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.054302
23.
23. E. Collet, M. Lorenc, M. Cammarata, L. Gurin, M. Servol, A. Tissot, M.-L. Boillot, H. Cailleau, and M. Buron-Le Cointe, Chem.-Eur. J. 18, 2051 (2012).
http://dx.doi.org/10.1002/chem.201103048
24.
24. M. Woerner, F. Zamponi, Z. Ansari, J. Dreyer, B. Freyer, M. Premont-Schwarz, and T. Elsaesser, J. Chem. Phys. 133, 064509 (2010).
http://dx.doi.org/10.1063/1.3469779
25.
25. F. Zamponi, P. Rothhardt, J. Stingl, M. Woerner, and T. Elsaesser, Proc. Natl. Acad. Sci. U.S.A. 109, 5207 (2012).
http://dx.doi.org/10.1073/pnas.1108206109
26.
26. J. Stingl, F. Zamponi, B. Freyer, M. Woerner, T. Elsaesser, and A. Borgschulte, Phys. Rev. Lett. 109, 147402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.147402
27.
27. International Tables for Crystallography, Space-Group Symmetry Vol. A, 5th ed., edited by T. Hahn (Wiley, 2005).
28.
28. W. Gawelda, A. Cannizzo, V. T. Pham, F. Van Mourik, C. Bressler, and M. Chergui, J. Am. Chem. Soc. 129, 8199 (2007).
http://dx.doi.org/10.1021/ja070454x
29.
29. N. Zhavoronkov, Y. Gritsai, M. Bargheer, M. Woerner, T. Elsaesser, F. Zamponi, I. Uschmann, and E. Förster, Opt. Lett. 30, 1737 (2005).
http://dx.doi.org/10.1364/OL.30.001737
30.
30. C. de Graaf and C. Sousa, Chem.-Eur. J. 16, 4550 (2010).
http://dx.doi.org/10.1002/chem.200903423
31.
31. F. N. Castellano, H. Malak, I. Gryczynski, and J. R. Lakowicz, Inorg. Chem. 36, 5548 (1997).
http://dx.doi.org/10.1021/ic970334y
32.
32. B. E. Warren, X-Ray Diffraction, 1st ed. (Dover Publications, 1990).
33.
33. S. Dick, Z. Kristallogr. - New Cryst. Struct. 213, 356 (1998).
34.
34. J. C. Ellenbogen, Phys. Rev. A 74, 034501 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.034501
35.
35. J. L. Gázquez and E. Ortiz, J. Chem. Phys. 81, 2741 (1984).
http://dx.doi.org/10.1063/1.447946
36.
36. R. Anantharaj and T. Banerjee, Fluid Phase Equilib. 293, 22 (2010).
http://dx.doi.org/10.1016/j.fluid.2010.02.027
37.
37. B. S. Kulkarni, A. Tanwar, and S. Pal, J. Chem. Sci. 119, 489 (2007).
http://dx.doi.org/10.1007/s12039-007-0062-0
38.
38. R. G. Parr and R. G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983).
http://dx.doi.org/10.1021/ja00364a005
39.
39. Y. Toyozawa, Prog. Theor. Phys. 12, 421 (1954).
http://dx.doi.org/10.1143/PTP.12.421
40.
40. Y. Toyozawa, Solid State Commun. 84, 255 (1992).
http://dx.doi.org/10.1016/0038-1098(92)90335-7
41.
41. W. B. Fowler, Phys. Rev. 151, 657 (1966).
http://dx.doi.org/10.1103/PhysRev.151.657
42.
42. W. Kohn, Phys. Rev. 105, 509 (1957).
http://dx.doi.org/10.1103/PhysRev.105.509
43.
43. A. Tissot, R. Bertoni, E. Collet, L. Toupet, and M. L. Boillot, J. Mater. Chem. 21, 18347 (2011).
http://dx.doi.org/10.1039/c1jm14163e
44.
44. See supplementary material at http://dx.doi.org/10.1063/1.4800223 for the analysis of experiment and data. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/14/10.1063/1.4800223
Loading
/content/aip/journal/jcp/138/14/10.1063/1.4800223
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/14/10.1063/1.4800223
2013-04-12
2014-12-19

Abstract

The transient electronic and molecular structure arising from photoinduced charge transfer in transition metal complexes is studied by X-ray powder diffraction with a 100 fs temporal and atomic spatial resolution. Crystals containing a dense array of Fe(II)-tris(bipyridine) ([Fe(bpy)3]2 +) complexes and their counterions display pronounced changes of electron density that occur within the first 100 fs after two-photon excitation of a small fraction of the [Fe(bpy)3]2 + complexes. Transient electron density maps derived from the diffraction data reveal a transfer of electronic charge from the Fe atoms and—so far unknown—from the counterions to the bipyridine units. Such charge transfer (CT) is connected with changes of the inter-ionic and the Fe-bipyridine distances. An analysis of the electron density maps demonstrates the many-body character of charge transfer which affects approximately 30 complexes around a directly photoexcited one. The many-body behavior is governed by the long-range Coulomb forces in the ionic crystals and described by the concept of electronic polarons.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/14/1.4800223.html;jsessionid=1q23xdi3ug4up.x-aip-live-06?itemId=/content/aip/journal/jcp/138/14/10.1063/1.4800223&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ultrafast inter-ionic charge transfer of transition-metal complexes mapped by femtosecond X-ray powder diffraction
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/14/10.1063/1.4800223
10.1063/1.4800223
SEARCH_EXPAND_ITEM