1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Ultrafast inter-ionic charge transfer of transition-metal complexes mapped by femtosecond X-ray powder diffraction
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/14/10.1063/1.4800223
1.
1. P. Gütlich and H. A. Goodwin, in Spin Crossover in Transition Metal Compounds I-III, edited by P. Gütlich and H. A. Goodwin (Springer, 2004), Vol. 233, pp. 147.
2.
2. I. Lawthers and J. J. McGarvey, J. Am. Chem. Soc. 106, 4280 (1984).
http://dx.doi.org/10.1021/ja00327a045
3.
3. S. Decurtins, P. Gutlich, K. M. Hasselbach, A. Hauser, and H. Spiering, Inorg. Chem. 24, 2174 (1985).
http://dx.doi.org/10.1021/ic00208a013
4.
4. P. Gütlich and A. Hauser, Coord. Chem. Rev. 97, 1 (1990).
http://dx.doi.org/10.1016/0010-8545(90)80076-6
5.
5. A. Hauser, Coord. Chem. Rev. 111, 275 (1991).
http://dx.doi.org/10.1016/0010-8545(91)84034-3
6.
6. A. Hauser, in Spin Crossover in Transition Metal Compounds I-III, Topics In Current Chemistry Vol. 234, edited by P. Gütlich and H. A. Goodwin (Springer, 2004), pp. 155198.
7.
7. E. Jeremy and J. K. McCusker, J. Am. Chem. Soc. 122, 4092 (2000).
http://dx.doi.org/10.1021/ja992436o
8.
8. E. A. Juban, A. L. Smeigh, J. E. Monat, and J. K. McCusker, Coord. Chem. Rev. 250, 1783 (2006).
http://dx.doi.org/10.1016/j.ccr.2006.02.010
9.
9. M. Khalil, M. A. Marcus, A. L. Smeigh, J. K. McCusker, H. H. W. Chong, and R. W. Schoenlein, J. Phys. Chem. A 110, 38 (2006).
http://dx.doi.org/10.1021/jp055002q
10.
10. A. L. Smeigh, M. Creelman, R. A. Mathies, and J. K. McCusker, J. Am. Chem. Soc. 130, 14105 (2008).
http://dx.doi.org/10.1021/ja805949s
11.
11. W. Gawelda, M. Johnson, F. M. F. De Groot, R. Abela, C. Bressler, and M. Chergui, J. Am. Chem. Soc. 128, 5001 (2006).
http://dx.doi.org/10.1021/ja054932k
12.
12. W. Gawelda, V.-T. Pham, M. Benfatto, Y. Zaushitsyn, M. Kaiser, D. Grolimund, S. L. Johnson, R. Abela, A. Hauser, C. Bressler, and M. Chergui, Phys. Rev. Lett. 98, 057401 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.057401
13.
13. C. Bressler, C. J. Milne, V.-T. Pham, A. ElNahhas, R. M. van der Veen, W. Gawelda, S. L. Johnson, P. Beaud, D. Grolimund, M. Kaiser, C. N. Borca, G. Ingold, R. Abela, and M. Chergui, Science 323, 489 (2009).
http://dx.doi.org/10.1126/science.1165733
14.
14. C. Consani, M. Prémont-Schwarz, A. ElNahhas, C. Bressler, F. van Mourik, A. Cannizzo, and M. Chergui, Angew. Chem. 121, 7320 (2009).
http://dx.doi.org/10.1002/ange.200902728
15.
15. A. Cannizzo, C. J. Milne, C. Consani, W. Gawelda, C. Bressler, F. van Mourik, and M. Chergui, Coord. Chem. Rev. 254, 2677 (2010).
http://dx.doi.org/10.1016/j.ccr.2009.12.007
16.
16. P. Guionneau, M. Marchivie, G. Bravic, J. Létard, and D. Chasseau, in Spin Crossover in Transition Metal Compounds I-III, Topics In Current Chemistry Vol. 234, edited by P. Gütlich and H. A. Goodwin (Springer, 2004), pp. 785786.
17.
17. J. F. Létard, P. Guionneau, and L. Goux-Capes, in Spin Crossover in Transition Metal Compounds I-III, Topics In Current Chemistry Vol. 235, edited by P. Gütlich and H. A. Goodwin (Springer, 2004), pp. 221249.
18.
18. A. Bousseksou, G. Molnár, L. Salmon, and W. Nicolazzi, Chem. Soc. Rev. 40, 3313 (2011).
http://dx.doi.org/10.1039/c1cs15042a
19.
19. K. Ichiyanagi, J. Hebert, L. Toupet, H. Cailleau, P. Guionneau, J. F. Létard, and E. Collet, Phys. Rev. B 73, 060408 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.060408
20.
20. D. Glijer, J. Hébert, E. Trzop, E. Collet, L. Toupet, H. Cailleau, G. S. Matouzenko, H. Z. Lazar, J. F. Létard, S. Koshihara, and M. Buron-Le Cointe, Phys. Rev. B 78, 134112 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.134112
21.
21. H. Cailleau, M. Lorenc, L. Guérin, M. Servol, E. Collet, and M. Buron-Le Cointe, Acta Crystallogr. Sec. A: Found. Crystallogr. 66, 189 (2010).
http://dx.doi.org/10.1107/S0108767309051046
22.
22. M. Lorenc, C. Balde, W. Kaszub, A. Tissot, N. Moisan, M. Servol, M. Buron-Le Cointe, H. Cailleau, P. Chasle, P. Czarnecki, M. L. Boillot, and E. Collet, Phys. Rev. B 85, 054302 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.054302
23.
23. E. Collet, M. Lorenc, M. Cammarata, L. Gurin, M. Servol, A. Tissot, M.-L. Boillot, H. Cailleau, and M. Buron-Le Cointe, Chem.-Eur. J. 18, 2051 (2012).
http://dx.doi.org/10.1002/chem.201103048
24.
24. M. Woerner, F. Zamponi, Z. Ansari, J. Dreyer, B. Freyer, M. Premont-Schwarz, and T. Elsaesser, J. Chem. Phys. 133, 064509 (2010).
http://dx.doi.org/10.1063/1.3469779
25.
25. F. Zamponi, P. Rothhardt, J. Stingl, M. Woerner, and T. Elsaesser, Proc. Natl. Acad. Sci. U.S.A. 109, 5207 (2012).
http://dx.doi.org/10.1073/pnas.1108206109
26.
26. J. Stingl, F. Zamponi, B. Freyer, M. Woerner, T. Elsaesser, and A. Borgschulte, Phys. Rev. Lett. 109, 147402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.147402
27.
27. International Tables for Crystallography, Space-Group Symmetry Vol. A, 5th ed., edited by T. Hahn (Wiley, 2005).
28.
28. W. Gawelda, A. Cannizzo, V. T. Pham, F. Van Mourik, C. Bressler, and M. Chergui, J. Am. Chem. Soc. 129, 8199 (2007).
http://dx.doi.org/10.1021/ja070454x
29.
29. N. Zhavoronkov, Y. Gritsai, M. Bargheer, M. Woerner, T. Elsaesser, F. Zamponi, I. Uschmann, and E. Förster, Opt. Lett. 30, 1737 (2005).
http://dx.doi.org/10.1364/OL.30.001737
30.
30. C. de Graaf and C. Sousa, Chem.-Eur. J. 16, 4550 (2010).
http://dx.doi.org/10.1002/chem.200903423
31.
31. F. N. Castellano, H. Malak, I. Gryczynski, and J. R. Lakowicz, Inorg. Chem. 36, 5548 (1997).
http://dx.doi.org/10.1021/ic970334y
32.
32. B. E. Warren, X-Ray Diffraction, 1st ed. (Dover Publications, 1990).
33.
33. S. Dick, Z. Kristallogr. - New Cryst. Struct. 213, 356 (1998).
34.
34. J. C. Ellenbogen, Phys. Rev. A 74, 034501 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.034501
35.
35. J. L. Gázquez and E. Ortiz, J. Chem. Phys. 81, 2741 (1984).
http://dx.doi.org/10.1063/1.447946
36.
36. R. Anantharaj and T. Banerjee, Fluid Phase Equilib. 293, 22 (2010).
http://dx.doi.org/10.1016/j.fluid.2010.02.027
37.
37. B. S. Kulkarni, A. Tanwar, and S. Pal, J. Chem. Sci. 119, 489 (2007).
http://dx.doi.org/10.1007/s12039-007-0062-0
38.
38. R. G. Parr and R. G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983).
http://dx.doi.org/10.1021/ja00364a005
39.
39. Y. Toyozawa, Prog. Theor. Phys. 12, 421 (1954).
http://dx.doi.org/10.1143/PTP.12.421
40.
40. Y. Toyozawa, Solid State Commun. 84, 255 (1992).
http://dx.doi.org/10.1016/0038-1098(92)90335-7
41.
41. W. B. Fowler, Phys. Rev. 151, 657 (1966).
http://dx.doi.org/10.1103/PhysRev.151.657
42.
42. W. Kohn, Phys. Rev. 105, 509 (1957).
http://dx.doi.org/10.1103/PhysRev.105.509
43.
43. A. Tissot, R. Bertoni, E. Collet, L. Toupet, and M. L. Boillot, J. Mater. Chem. 21, 18347 (2011).
http://dx.doi.org/10.1039/c1jm14163e
44.
44. See supplementary material at http://dx.doi.org/10.1063/1.4800223 for the analysis of experiment and data. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/14/10.1063/1.4800223
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Unit cell of [Fe(bpy)3]2 + ( )2 with lattice vectors a, b, and c from two perspectives. Fe atoms are brown, N blue, C gray, F green, and P orange. These colored atoms show one molecular unit. The additional light gray atoms complete the unit cell.

Image of FIG. 2.

Click to view

FIG. 2.

Absorption spectrum of a poly-crystalline thin film of [Fe(bpy)3]2 +( )2.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Powder diffraction pattern recorded with the X-ray plasma source, with an integration time of 8 h. The signal I(2θ)/I 0(022) is integrated over one ring (cf. inset) which was diffracted from the powdered sample, normalized to the strongest ring of the unexcited sample (i.e., 022), and plotted over the diffraction angle 2θ. The numbers are the Miller indices of the corresponding set of lattice planes. The asterisks marks the peaks, originating from nonequivalent sets of lattice planes. (Inset) Diffraction pattern as recorded with the X-ray detector. (b) Transient changes of the X-ray reflections as a function of the delay. The changes have been color-encoded as shown in the color bar: blue corresponds to a decrease and red to an increase of the X-ray reflectivity, respectively. (c-f) Change of the diffracted intensity ΔI(hkl, t)/I 0(022), normalized to the intensity I 0(022) without excitation, as a function of delay time between optical pump and X-ray probe. The red lines (guides to the eye) are continuous B-splines of the data points for t > 0 which have been set to zero for t < 0.

Image of FIG. 4.

Click to view

FIG. 4.

Contour plots of the change of the electron density at 250 fs pump-probe delay. The dashed lines are contour lines of the stationary electron density, indicating the position of (a) the six fluorine atoms, and the phosphorus atom in the middle, (b) the Fe atom, and one bipyridine unit.

Image of FIG. 5.

Click to view

FIG. 5.

Transient charge density changes as a function of the delay time, calculated from the diffraction data (Figure 3 ). (a-c) Transient charge changes ηΔQ(t) at the Fe, the bipyridine, and the hexafluorophosphate site, respectively. The blue curves are scaled versions of the (400-nm) pump–(530 nm) probe experiment (see main text).

Image of FIG. 6.

Click to view

FIG. 6.

Analysis of the transient charge-density map. Distance changes ηΔR(t) of the charge center of gravity of neighboring atoms or units. (a) Fe–N bond length changes. (b) Distance changes between one pyridine ring and Fe. (c) Distance changes between two pyridine rings within a bipyridine unit. The blue curves are scaled versions of the (400-nm) pump–(530 nm) probe experiment (see main text).

Image of FIG. 7.

Click to view

FIG. 7.

(a) 1D-projection ρLP[w|R PR Fe|] (black solid line) of the stationary electron density of one Fe atom, one bipyridine unit, and one counterion on the connecting line between the Fe- and the P-atom (dashed line). (b) Measured change of the 1D-projection ΔρLP[w|R PR Fe|, t = +250 fs] (blue and red area plots) together with the prediction of the theoretical model (dashed line).

Image of FIG. 8.

Click to view

FIG. 8.

Schematic representation of the excitation in the crystal. (a) The optical excitation is localized on an isolated complex. This situation is very similar to the results obtained in liquid diluted solutions where a photon excites isolated complexes. (b) The charge redistribution resulting from the optical excitation involves many neighboring unit cells via unshielded long-range Coulombic forces. This case is corroborated by the large value of η needed in Figure 5 to obtain a physically meaningful amount of transferred charge. (c,d) Calculated electrostatic energy of a super cell consisting of many unit cells as a function of both the charge of the ions (x-axis) and that of the bipyridine units (y-axis). The contour plots show the energy per [Fe(bpy)3]2 +( )2 unit for simulations (c) without and (d) with the Madelung energy.

Loading

Article metrics loading...

/content/aip/journal/jcp/138/14/10.1063/1.4800223
2013-04-12
2014-04-16

Abstract

The transient electronic and molecular structure arising from photoinduced charge transfer in transition metal complexes is studied by X-ray powder diffraction with a 100 fs temporal and atomic spatial resolution. Crystals containing a dense array of Fe(II)-tris(bipyridine) ([Fe(bpy)3]2 +) complexes and their counterions display pronounced changes of electron density that occur within the first 100 fs after two-photon excitation of a small fraction of the [Fe(bpy)3]2 + complexes. Transient electron density maps derived from the diffraction data reveal a transfer of electronic charge from the Fe atoms and—so far unknown—from the counterions to the bipyridine units. Such charge transfer (CT) is connected with changes of the inter-ionic and the Fe-bipyridine distances. An analysis of the electron density maps demonstrates the many-body character of charge transfer which affects approximately 30 complexes around a directly photoexcited one. The many-body behavior is governed by the long-range Coulomb forces in the ionic crystals and described by the concept of electronic polarons.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/14/1.4800223.html;jsessionid=1uenucbtynj8j.x-aip-live-03?itemId=/content/aip/journal/jcp/138/14/10.1063/1.4800223&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ultrafast inter-ionic charge transfer of transition-metal complexes mapped by femtosecond X-ray powder diffraction
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/14/10.1063/1.4800223
10.1063/1.4800223
SEARCH_EXPAND_ITEM