Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. Gütlich and H. A. Goodwin, in Spin Crossover in Transition Metal Compounds I-III, edited by P. Gütlich and H. A. Goodwin (Springer, 2004), Vol. 233, pp. 147.
2. I. Lawthers and J. J. McGarvey, J. Am. Chem. Soc. 106, 4280 (1984).
3. S. Decurtins, P. Gutlich, K. M. Hasselbach, A. Hauser, and H. Spiering, Inorg. Chem. 24, 2174 (1985).
4. P. Gütlich and A. Hauser, Coord. Chem. Rev. 97, 1 (1990).
5. A. Hauser, Coord. Chem. Rev. 111, 275 (1991).
6. A. Hauser, in Spin Crossover in Transition Metal Compounds I-III, Topics In Current Chemistry Vol. 234, edited by P. Gütlich and H. A. Goodwin (Springer, 2004), pp. 155198.
7. E. Jeremy and J. K. McCusker, J. Am. Chem. Soc. 122, 4092 (2000).
8. E. A. Juban, A. L. Smeigh, J. E. Monat, and J. K. McCusker, Coord. Chem. Rev. 250, 1783 (2006).
9. M. Khalil, M. A. Marcus, A. L. Smeigh, J. K. McCusker, H. H. W. Chong, and R. W. Schoenlein, J. Phys. Chem. A 110, 38 (2006).
10. A. L. Smeigh, M. Creelman, R. A. Mathies, and J. K. McCusker, J. Am. Chem. Soc. 130, 14105 (2008).
11. W. Gawelda, M. Johnson, F. M. F. De Groot, R. Abela, C. Bressler, and M. Chergui, J. Am. Chem. Soc. 128, 5001 (2006).
12. W. Gawelda, V.-T. Pham, M. Benfatto, Y. Zaushitsyn, M. Kaiser, D. Grolimund, S. L. Johnson, R. Abela, A. Hauser, C. Bressler, and M. Chergui, Phys. Rev. Lett. 98, 057401 (2007).
13. C. Bressler, C. J. Milne, V.-T. Pham, A. ElNahhas, R. M. van der Veen, W. Gawelda, S. L. Johnson, P. Beaud, D. Grolimund, M. Kaiser, C. N. Borca, G. Ingold, R. Abela, and M. Chergui, Science 323, 489 (2009).
14. C. Consani, M. Prémont-Schwarz, A. ElNahhas, C. Bressler, F. van Mourik, A. Cannizzo, and M. Chergui, Angew. Chem. 121, 7320 (2009).
15. A. Cannizzo, C. J. Milne, C. Consani, W. Gawelda, C. Bressler, F. van Mourik, and M. Chergui, Coord. Chem. Rev. 254, 2677 (2010).
16. P. Guionneau, M. Marchivie, G. Bravic, J. Létard, and D. Chasseau, in Spin Crossover in Transition Metal Compounds I-III, Topics In Current Chemistry Vol. 234, edited by P. Gütlich and H. A. Goodwin (Springer, 2004), pp. 785786.
17. J. F. Létard, P. Guionneau, and L. Goux-Capes, in Spin Crossover in Transition Metal Compounds I-III, Topics In Current Chemistry Vol. 235, edited by P. Gütlich and H. A. Goodwin (Springer, 2004), pp. 221249.
18. A. Bousseksou, G. Molnár, L. Salmon, and W. Nicolazzi, Chem. Soc. Rev. 40, 3313 (2011).
19. K. Ichiyanagi, J. Hebert, L. Toupet, H. Cailleau, P. Guionneau, J. F. Létard, and E. Collet, Phys. Rev. B 73, 060408 (2006).
20. D. Glijer, J. Hébert, E. Trzop, E. Collet, L. Toupet, H. Cailleau, G. S. Matouzenko, H. Z. Lazar, J. F. Létard, S. Koshihara, and M. Buron-Le Cointe, Phys. Rev. B 78, 134112 (2008).
21. H. Cailleau, M. Lorenc, L. Guérin, M. Servol, E. Collet, and M. Buron-Le Cointe, Acta Crystallogr. Sec. A: Found. Crystallogr. 66, 189 (2010).
22. M. Lorenc, C. Balde, W. Kaszub, A. Tissot, N. Moisan, M. Servol, M. Buron-Le Cointe, H. Cailleau, P. Chasle, P. Czarnecki, M. L. Boillot, and E. Collet, Phys. Rev. B 85, 054302 (2012).
23. E. Collet, M. Lorenc, M. Cammarata, L. Gurin, M. Servol, A. Tissot, M.-L. Boillot, H. Cailleau, and M. Buron-Le Cointe, Chem.-Eur. J. 18, 2051 (2012).
24. M. Woerner, F. Zamponi, Z. Ansari, J. Dreyer, B. Freyer, M. Premont-Schwarz, and T. Elsaesser, J. Chem. Phys. 133, 064509 (2010).
25. F. Zamponi, P. Rothhardt, J. Stingl, M. Woerner, and T. Elsaesser, Proc. Natl. Acad. Sci. U.S.A. 109, 5207 (2012).
26. J. Stingl, F. Zamponi, B. Freyer, M. Woerner, T. Elsaesser, and A. Borgschulte, Phys. Rev. Lett. 109, 147402 (2012).
27. International Tables for Crystallography, Space-Group Symmetry Vol. A, 5th ed., edited by T. Hahn (Wiley, 2005).
28. W. Gawelda, A. Cannizzo, V. T. Pham, F. Van Mourik, C. Bressler, and M. Chergui, J. Am. Chem. Soc. 129, 8199 (2007).
29. N. Zhavoronkov, Y. Gritsai, M. Bargheer, M. Woerner, T. Elsaesser, F. Zamponi, I. Uschmann, and E. Förster, Opt. Lett. 30, 1737 (2005).
30. C. de Graaf and C. Sousa, Chem.-Eur. J. 16, 4550 (2010).
31. F. N. Castellano, H. Malak, I. Gryczynski, and J. R. Lakowicz, Inorg. Chem. 36, 5548 (1997).
32. B. E. Warren, X-Ray Diffraction, 1st ed. (Dover Publications, 1990).
33. S. Dick, Z. Kristallogr. - New Cryst. Struct. 213, 356 (1998).
34. J. C. Ellenbogen, Phys. Rev. A 74, 034501 (2006).
35. J. L. Gázquez and E. Ortiz, J. Chem. Phys. 81, 2741 (1984).
36. R. Anantharaj and T. Banerjee, Fluid Phase Equilib. 293, 22 (2010).
37. B. S. Kulkarni, A. Tanwar, and S. Pal, J. Chem. Sci. 119, 489 (2007).
38. R. G. Parr and R. G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983).
39. Y. Toyozawa, Prog. Theor. Phys. 12, 421 (1954).
40. Y. Toyozawa, Solid State Commun. 84, 255 (1992).
41. W. B. Fowler, Phys. Rev. 151, 657 (1966).
42. W. Kohn, Phys. Rev. 105, 509 (1957).
43. A. Tissot, R. Bertoni, E. Collet, L. Toupet, and M. L. Boillot, J. Mater. Chem. 21, 18347 (2011).
44. See supplementary material at for the analysis of experiment and data. [Supplementary Material]

Data & Media loading...


Article metrics loading...



The transient electronic and molecular structure arising from photoinduced charge transfer in transition metal complexes is studied by X-ray powder diffraction with a 100 fs temporal and atomic spatial resolution. Crystals containing a dense array of Fe(II)-tris(bipyridine) ([Fe(bpy)3]2 +) complexes and their counterions display pronounced changes of electron density that occur within the first 100 fs after two-photon excitation of a small fraction of the [Fe(bpy)3]2 + complexes. Transient electron density maps derived from the diffraction data reveal a transfer of electronic charge from the Fe atoms and—so far unknown—from the counterions to the bipyridine units. Such charge transfer (CT) is connected with changes of the inter-ionic and the Fe-bipyridine distances. An analysis of the electron density maps demonstrates the many-body character of charge transfer which affects approximately 30 complexes around a directly photoexcited one. The many-body behavior is governed by the long-range Coulomb forces in the ionic crystals and described by the concept of electronic polarons.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd