1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: New insight into electronic shells of metal clusters: Analogues of simple molecules
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/14/10.1063/1.4801860
1.
1. W. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Chou, and M. L. Cohen, Phys. Rev. Lett. 52, 2141 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.2141
2.
2. W. A. de Heer, Rev. Mod. Phys. 65, 611 (1993).
http://dx.doi.org/10.1103/RevModPhys.65.611
3.
3. M. Brack, Rev. Mod. Phys. 65, 677 (1993).
http://dx.doi.org/10.1103/RevModPhys.65.677
4.
4. F. Baletto and R. Ferrando, Rev. Mod. Phys. 77, 371 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.371
5.
5. R. L. Johnston, Atomic and Molecular Clusters (Taylor & Francis, London, 2002).
6.
6. W. Ekardt, Phys. Rev. B 29, 1558 (1984).
http://dx.doi.org/10.1103/PhysRevB.29.1558
7.
7. M. Walter, J. Akola, O. Lopez-Acevedo, P. D. Jadzinsky, G. Calero, C. J. Ackerson, R. L. Whetten, H. Gronbeck, and H. Hakkinen, Proc. Natl. Acad. Sci. U.S.A. 105, 9157 (2008).
http://dx.doi.org/10.1073/pnas.0801001105
8.
8. R. S. Mulliken, Rev. Mod. Phys. 4, 1 (1932).
http://dx.doi.org/10.1103/RevModPhys.4.1
9.
9. R. Leuchtner, A. Harms, and A. Castleman Jr., J. Chem. Phys. 91, 2753 (1989).
http://dx.doi.org/10.1063/1.456988
10.
10. D. Bergeron, A. Castleman Jr., T. Morisato, and S. Khanna, Science 304, 84 (2004).
http://dx.doi.org/10.1126/science.1093902
11.
11. D. Bergeron, P. Roach, A. Castleman Jr., N. Jones, and S. Khanna, Science 307, 231 (2005).
http://dx.doi.org/10.1126/science.1105820
12.
12. K. Clemenger, Phys. Rev. B 32, 1359 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.1359
13.
13. J. Blanc, V. Bonacic-Koutecky, M. Broyer, J. Chevaleyre, P. Dugourd, J. Koutecky, C. Scheuch, J. Wolf, and L. Woste, J. Chem. Phys. 96, 1793 (1992).
http://dx.doi.org/10.1063/1.462846
14.
14. M. W. Sung, R. Kawai, and J. H. Weare, Phys. Rev. Lett. 73, 3552 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.3552
15.
15. R. Fournier, J. B. Y. Cheng, and A. Wong, J. Chem. Phys. 119, 9444 (2003).
http://dx.doi.org/10.1063/1.1615237
16.
16. N. Goel, S. Gautam, and K. Dharamvir, Int. J. Quantum Chem. 112, 575 (2012).
http://dx.doi.org/10.1002/qua.23022
17.
17. A. N. Alexandrova and A. I. Boldyrev, J. Chem. Theory Comput. 1, 566 (2005).
http://dx.doi.org/10.1021/ct050093g
18.
18. A. N. Alexandrova, A. I. Boldyrev, X. Li, H. W. Sarkas, J. H. Hendricks, S. T. Arnold, and K. H. Bowen, J. Chem. Phys. 134, 044322 (2011).
http://dx.doi.org/10.1063/1.3532832
19.
19. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09, Revision B.01, Gaussian, Inc., Wallingford, CT, 2009.
20.
20. U. Varetto, MOLEKEL 5.4.0.8, Swiss National Supercomputing Centre, Manno, Switzerland.
21.
21. A. I. Boldyrev and L. S. Wang, Chem. Rev. 105, 3716 (2005).
http://dx.doi.org/10.1021/cr030091t
22.
22.The size of basis set does not affect the overall framework of MO pictures and bonding features. Thus, as a model study, for clarity and simplicity, a small 3-21G basis set is used for MO and chemical bonding analysis in this work.
23.
23. D. Y. Zubarev and A. I. Boldyrev, Phys. Chem. Chem. Phys. 10, 5207 (2008).
http://dx.doi.org/10.1039/b804083d
24.
24. D. Y. Zubarev and A. I. Boldyrev, J. Phys. Chem. A 113, 866 (2009).
http://dx.doi.org/10.1021/jp808103t
25.
25. D. Y. Zubarev and A. I. Boldyrev, J. Org. Chem. 73, 9251 (2008).
http://dx.doi.org/10.1021/jo801407e
26.
26. A. P. Sergeeva, D. Y. Zubarev, H. J. Zhai, A. I. Boldyrev, and L. S. Wang, J. Am. Chem. Soc. 130, 7244 (2008).
http://dx.doi.org/10.1021/ja802494z
27.
27. W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S. Wang, and A. I. Boldyrev, Nat. Chem. 2, 202 (2010).
http://dx.doi.org/10.1038/nchem.534
28.
28. L. J. Cheng, J. Chem. Phys. 136, 104301 (2012).
http://dx.doi.org/10.1063/1.3692183
29.
29. S. Shaik, P. Maitre, G. Sini, and P. C. Hiberty, J. Am. Chem. Soc. 114, 7861 (1992).
http://dx.doi.org/10.1021/ja00046a035
30.
30. S. Shaik, D. Danovich, W. Wu, and P. C. Hiberty, Nat. Chem. 1, 443 (2009).
http://dx.doi.org/10.1038/nchem.327
31.
31. S. Khanna and P. Jena, Phys. Rev. Lett. 69, 1664 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.1664
32.
32. A. Castleman Jr. and S. Khanna, J. Phys. Chem. C 113, 2664 (2009).
http://dx.doi.org/10.1021/jp806850h
33.
33. D. Li, M. H. Nielsen, J. R. Lee, C. Frandsen, J. F. Banfield, and J. J. De Yoreo, Science 336, 1014 (2012).
http://dx.doi.org/10.1126/science.1219643
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/14/10.1063/1.4801860
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Energies of the GMs of Li N clusters at B3LYP/6-311+G* relative to E ave, a fit to the energies of the GMs at size ratio 2 ≤ N ≤ 26 using the form a + bN 1/3 + cN 2/3 + dN, which represents the average energy of the GMs. Upward peaks, as labeled, represent particular stable minima or “magic numbers” relative to the “average energy” of the GMs. The structures and point groups of the upward peaks are labeled in the figure, where Li atoms may be given in different colors for better viewing.

Image of FIG. 2.

Click to view

FIG. 2.

Di-superatomic model for the prolate (a) Li14, (b) Li10, and (c) Li12 clusters.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Comparison of the geometries and Kohn-Sham MO diagrams of Li14 cluster and F2 molecules. (b) AdNDP localized natural bonding orbitals of Li14 cluster. (c) AdNDP localized natural bonding orbitals of F2 molecule. The isosurface values for Li clusters and F2 molecule are 0.10 and 0.02, respectively.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Comparison of the geometries and Kohn-Sham MO diagrams of Li10 cluster and N2 molecules. (b) AdNDP localized natural bonding orbitals of Li10 cluster. (c) AdNDP localized natural bonding orbitals of N2 molecule.

Image of FIG. 5.

Click to view

FIG. 5.

Comparison of the (a) geometries, (b) Kohn-Sham MO diagrams, and (c) AdNDP localized natural bonding orbitals of Li8 cluster and CH4 molecule.

Loading

Article metrics loading...

/content/aip/journal/jcp/138/14/10.1063/1.4801860
2013-04-12
2014-04-19

Abstract

A new concept of super valence bond is proposed, of which superatoms can share both valence pairs and nuclei for shell closure thus forming delocalized super bonding. Using Li clusters as a test case, we theoretically find that metal clusters can mimic the behavior of simple molecules in electronic shells. It is found that Li14, Li10, and Li8 clusters are analogues of F2, N2, and CH4 molecules, respectively, in molecular orbital diagrams and bonding patterns. This new concept shows new insights in understanding the stability of clusters and designing the cluster-assembling materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/14/1.4801860.html;jsessionid=28haulg6m47fe.x-aip-live-01?itemId=/content/aip/journal/jcp/138/14/10.1063/1.4801860&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: New insight into electronic shells of metal clusters: Analogues of simple molecules
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/14/10.1063/1.4801860
10.1063/1.4801860
SEARCH_EXPAND_ITEM