1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Covalent nature of X⋯H2O (X = F, Cl, and Br) interactions
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/14/10.1063/1.4801872
1.
1. M. J. Molina and F. S. Rowland, Nature (London) 249, 810 (1974).
http://dx.doi.org/10.1038/249810a0
2.
2. D. Skouteris, D. E. Manolopoulos, W. Bian, H.-J. Werner, L.-H. Lai, and K. Liu, Science 286, 1713 (1999).
http://dx.doi.org/10.1126/science.286.5445.1713
3.
3. G. Czakó and J. M. Bowman, J. Am. Chem. Soc. 131, 17534 (2009).
http://dx.doi.org/10.1021/ja906886z
4.
4. W. Zhang, H. Kawamata, and K. Liu, Science 325, 303 (2009).
http://dx.doi.org/10.1126/science.1175018
5.
5. J. C. Polanyi, Acc. Chem. Res. 5, 161 (1972).
http://dx.doi.org/10.1021/ar50053a001
6.
6. J. Li, B. Jiang and H. Guo, Chem. Sci. 4, 629 (2013).
http://dx.doi.org/10.1039/c2sc21457a
7.
7. W. H. Duewer and D. W. Setser, J. Chem. Phys 58, 2310 (1973).
http://dx.doi.org/10.1063/1.1679506
8.
8. M. A. Wickramaaratchi, D. W. Setser, H. Hildebrandt, B. Korbitzer, and H. Heydtmann, Chem. Phys. 94, 109 (1985).
http://dx.doi.org/10.1016/0301-0104(85)85070-9
9.
9. B. S. Agrawalla and D. W. Setser, J. Phys. Chem. 90, 2450 (1986).
http://dx.doi.org/10.1021/j100402a039
10.
10. M. Ziemkiewicz, M. Wojcik, and D. J. Nesbitt, J. Chem. Phys. 123, 224307 (2005).
http://dx.doi.org/10.1063/1.2098648
11.
11. A. M. Zolot and D. J. Nesbitt, J. Chem. Phys. 129, 184305 (2008).
http://dx.doi.org/10.1063/1.2998524
12.
12. M. Ziemkiewicz and D. J. Nesbitt, J. Chem. Phys. 131, 054309 (2009).
http://dx.doi.org/10.1063/1.3194284
13.
13. M. P. Deskevich, D. J. Nesbitt, and H.-J. Werner, J. Chem. Phys. 120, 7281 (2004).
http://dx.doi.org/10.1063/1.1667468
14.
14. G. Li, L. Zhou, Q.-S. Li, Y. Xie, and H. F. Schaefer III, Phys. Chem. Chem. Phys. 14, 10891 (2012).
http://dx.doi.org/10.1039/c2cp41555k
15.
15. J. Li, R. Dawes and H. Guo, J. Chem. Phys. 137, 094304 (2012).
http://dx.doi.org/10.1063/1.4748857
16.
16. J. Li, B. Jiang and H. Guo, J. Am. Chem. Soc. 135, 982 (2013).
http://dx.doi.org/10.1021/ja311159j
17.
17. J. Li, B. Jiang and H. Guo, J. Chem. Phys. 138, 074309 (2013).
http://dx.doi.org/10.1063/1.4791640
18.
18. J. M. Hutson, Annu. Rev. Phys. Chem. 41, 123 (1990).
http://dx.doi.org/10.1146/annurev.pc.41.100190.001011
19.
19. J. A. Klos, M. M. Szczesniak, and G. Chalasinski, Int. Rev. Phys. Chem. 23, 541 (2004).
http://dx.doi.org/10.1080/01442350500063634
20.
20. T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys. 127, 221106 (2007).
http://dx.doi.org/10.1063/1.2817618
21.
21. G. Knizia, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 130, 054104 (2009).
http://dx.doi.org/10.1063/1.3054300
22.
22. R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
http://dx.doi.org/10.1063/1.462569
23.
23. H.-J. Werner, P. J. Knowles, F. R. Manby, M. Schütz et al., MOLPRO, version 2010.1, a package of ab initio programs, 2010, see http://www.molpro.net.
24.
24.See supplementary material at http://dx.doi.org/10.1063/1.4801872 for details of theoretical methods and additional results. [Supplementary Material]
25.
25. M. H. Alexander, D. E. Manolopoulos, and H.-J. Werner, J. Chem. Phys. 113, 11084 (2000).
http://dx.doi.org/10.1063/1.1326850
26.
26. J. A. Klos, G. Chalasinski, and M. M. Szczesniak, Int. J. Quantum Chem. 90, 1038 (2002).
http://dx.doi.org/10.1002/qua.10328
27.
27. M. P. Deskevich, M. Y. Hayes, K. Takahashi, R. T. Skodje, and D. J. Nesbitt, J. Chem. Phys. 124, 224303 (2006).
http://dx.doi.org/10.1063/1.2192505
28.
28. G. Czakó, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 130, 084301 (2009).
http://dx.doi.org/10.1063/1.3068528
29.
29. C. Xiao, G. Shen, X. Wang, H. Fan, and X. Yang, J. Phys. Chem. A 114, 4520 (2010).
http://dx.doi.org/10.1021/jp100435q
30.
30. H. Feng, W. Sun, Y. Xie, and H. F. Schaefer III, Chem. Asian J. 6, 3152 (2011).
http://dx.doi.org/10.1002/asia.201100468
31.
31. W. Bian and H. J. Werner, J. Chem. Phys. 112, 220 (2000).
http://dx.doi.org/10.1063/1.480574
32.
32. J. A. Klos, G. Chalasinski, and M. M. Szczesniak, J. Chem. Phys. 117, 4709 (2002).
http://dx.doi.org/10.1063/1.1498815
33.
33. J. A. Klos, G. Chalasinski, M. M. Szczesniak, and H. J. Werner, J. Chem. Phys. 115, 3085 (2001).
http://dx.doi.org/10.1063/1.1386417
34.
34. G. Czakó and J. M. Bowman, J. Chem. Phys. 136, 044307 (2012).
http://dx.doi.org/10.1063/1.3679014
35.
35. M. Monge-Palacios and J. Espinosa-Garcia, J. Phys. Chem. A 114, 4418 (2010).
http://dx.doi.org/10.1021/jp911664t
36.
36. M.-L. Dubernet and J. M. Hutson, J. Chem. Phys. 101, 1939 (1994).
http://dx.doi.org/10.1063/1.467704
37.
37. J. Makarewicz, J. Chem. Phys. 129, 184310 (2008).
http://dx.doi.org/10.1063/1.3009270
38.
38. B. J. Lynch, P. L. Fast, M. Harris, and D. G. Truhlar, J. Phys. Chem. A 104, 4811 (2000).
http://dx.doi.org/10.1021/jp000497z
39.
39. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09, Revision B.01, Gaussian, Inc., Wallingford, CT, 2009.
40.
40. P. Pyykkö, Chem. Rev. 97, 597 (1997).
http://dx.doi.org/10.1021/cr940396v
41.
41. I. Mayer, J. Comput. Chem. 28, 204 (2007).
http://dx.doi.org/10.1002/jcc.20494
42.
42. X. Fradera, M. A. Austen, and R. F. W. Bader, J. Phys. Chem. A 103, 304 (1999).
http://dx.doi.org/10.1021/jp983362q
43.
43. I. Fourré, J. Bergès, and C. Houée-Levin, J. Phys. Chem. A 114, 7359 (2010).
http://dx.doi.org/10.1021/jp911983a
44.
44. M. L. McKee, A. Nicolaides, and L. Radom, J. Am. Chem. Soc. 118, 10571 (1996).
http://dx.doi.org/10.1021/ja9613973
45.
45. Y. Gao, I. M. Alecu, P.-C. Hsieh, B. P. Morgan, P. Marshall, and L. N. Krasnoperov, J. Phys. Chem. A 110, 6844 (2006).
http://dx.doi.org/10.1021/jp056406l
46.
46. L. Pauling, J. Am. Chem. Soc. 53, 3225 (1931).
http://dx.doi.org/10.1021/ja01360a004
47.
47. I. Fourré and B. Silvi, Heteroat. Chem. 18, 135 (2007).
http://dx.doi.org/10.1002/hc.20325
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/14/10.1063/1.4801872
Loading
/content/aip/journal/jcp/138/14/10.1063/1.4801872
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/14/10.1063/1.4801872
2013-04-12
2014-07-24

Abstract

Open-shell halogen (X = F, Cl, Br) atoms form entrance-channel complexes with H2O, which play an important role in the X + H2O reactions. To understand their structures and origin of stability, we report an extensive ab initio study of such complexes and contrast them with complexes between H2O and H/O(3P). Evidence is presented to show that the interaction between a halogen atom and H2O is dominated by a weak but covalent bond, rather than dispersion and/or electrostatic interactions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/14/1.4801872.html;jsessionid=1n85174o846m0.x-aip-live-02?itemId=/content/aip/journal/jcp/138/14/10.1063/1.4801872&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Covalent nature of X⋯H2O (X = F, Cl, and Br) interactions
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/14/10.1063/1.4801872
10.1063/1.4801872
SEARCH_EXPAND_ITEM