1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Isotope effect in the photochemical decomposition of CO2 (ice) by Lyman-α radiation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/15/10.1063/1.4800929
1.
1. G. C. Pimentel, Formation and Trapping of Free Radicals (Academic Press Inc., New York, 1960).
2.
2. L. Andrews, Annu. Rev. Phys. Chem. 22, 109 (1971).
http://dx.doi.org/10.1146/annurev.pc.22.100171.000545
3.
3. N. Watanabe and A. Kouchi, Prog. Surf. Sci. 83, 439 (2008).
http://dx.doi.org/10.1016/j.progsurf.2008.10.001
4.
4. S. Viti, M. P. Collings, J. W. Dever, M. R. S. McCoustra, and D. A. Williams, Mon. Not. R. Astron. Soc. 354, 1141 (2004).
http://dx.doi.org/10.1111/j.1365-2966.2004.08273.x
5.
5. K. I. Öberg, E. F. van Dishoeck, and H. Linnartz, Astron. Astrophys. 496, 281 (2009).
http://dx.doi.org/10.1051/0004-6361/200810207
6.
6. A. A. Fedorova, E. Lellouch, D. V. Titov, T. de Graauw, and H. Feuchtgruber, Planet. Space Sci. 50, 3 (2002).
http://dx.doi.org/10.1016/S0032-0633(01)00110-6
7.
7. H. J. Fraser, M. R. S. McCoustra, and D. A. Williams, Astron. Geophys. 43, 210218 (2002).
http://dx.doi.org/10.1046/j.1468-4004.2002.43210.x
8.
8. P. Ehrenfreud and W. A. Schutte, Astrochemistry – From Molecular Clouds to Planetary Systems (ASP Publishing, San Francisco, 2000).
9.
9. D. C. Lis, A. Wootten, M. Gerin, and E. Roueff, Astrophys. J. 710, L49 (2010).
http://dx.doi.org/10.1088/2041-8205/710/1/L49
10.
10. R. H. Rubin, G. J. Ferland, E. E. Chollet, and R. Horstmeyer, Astrophys. J. 605, 784 (2004).
http://dx.doi.org/10.1086/382528
11.
11. V. Vanýsek and J. Rahe, Earth, Moon, and Planets 18(4), 441 (1978).
http://dx.doi.org/10.1007/BF00897294
12.
12. S. Wyckoff, E. Lindholm, P. A. Wehinger, B. A. Peterson, J. M. Zucconi, and M. C. Festou, Astrophys. J. 339, 488 (1989).
http://dx.doi.org/10.1086/167312
13.
13. D. Menzel and R. Gomer, J. Chem. Phys. 41, 3311 (1964).
http://dx.doi.org/10.1063/1.1725730
14.
14. P. A. Redhead, Can. J. Phys. 42, 886 (1964).
http://dx.doi.org/10.1139/p64-083
15.
15. R. D. Ramsier and J. T. Yates Jr., Surf. Sci. Rep. 12, 246 (1991).
http://dx.doi.org/10.1016/0167-5729(91)90013-N
16.
16. X. Y. Zhu and J. M. White, Phys. Rev. Lett. 68(22), 3359 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.3359
17.
17. T. E. Madey, J. T. Yates, D. A. King, and C. J. Uhlaner, J. Chem. Phys. 52, 5215 (1970).
http://dx.doi.org/10.1063/1.1672766
18.
18. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
19.
19. M. Rajappan, C. Yuan, and J. T. Yates Jr., J. Chem. Phys. 134, 064315 (2011).
http://dx.doi.org/10.1063/1.3532089
20.
20. M. Rajappan, M. Buttner, C. Cox, and J. T. Yates Jr., J. Phys. Chem. A 114, 3443 (2010).
http://dx.doi.org/10.1021/jp9093436
21.
21. J. Xu, H. J. Jansch, and J. T. Yates Jr., J. Vac. Sci. Technol. A 11, 726 (1993).
http://dx.doi.org/10.1116/1.578799
22.
22. P. A. Gerakines, W. A. Schutte, J. M. Greenberg, and E. F. van Dishoeck, Astron. Astrophys. 296, 810 (1995).
23.
23. N. J. Mason, A. Dawes, P. D. Holtom, R. J. Mukerji, M. P. Davis, B. Sivaraman, R. I. Kaiser, S. V. Hoffmann, and D. A. Shaw, Faraday Discuss. 133, 311 (2006).
http://dx.doi.org/10.1039/b518088k
24.
24. S. G. Warren, Appl. Opt. 25, 2650 (1986).
http://dx.doi.org/10.1364/AO.25.002650
25.
25. M. A. Ovchinnikov and C. A. Wight, J. Chem. Phys. 99, 3374 (1993).
http://dx.doi.org/10.1063/1.465147
26.
26. P. A. Gerakines, W. A. Schutte, and P. Ehrenfreund, Astron. Astrophys. 312, 289 (1996).
27.
27. N. G. Moll, D. R. Clutter, and W. E. Thompson, J. Chem. Phys. 45, 4469 (1966).
http://dx.doi.org/10.1063/1.1727526
28.
28. C. J. Bennett, C. Jamieson, A. M. Mebel, and R. I. Kaiser, Phys. Chem. Chem. Phys. 6, 735 (2004).
http://dx.doi.org/10.1039/b315626p
29.
29. S. Singh, J. Mol. Struct. 127, 203 (1985).
http://dx.doi.org/10.1016/0022-2860(85)80002-8
30.
30. P. J. Knowles and P. Rosmus, Chem. Phys. Lett. 146, 230 (1988).
http://dx.doi.org/10.1016/0009-2614(88)87436-0
31.
31. H. Okabe, Photochemistry of Small Molecules (John Wiley & Sons Inc., 1978).
32.
32. M. Wolf, S. Nettesheim, J. M. White, E. Hasselbrink, and G. Ertl, J. Chem. Phys. 94, 4609 (1991).
http://dx.doi.org/10.1063/1.460589
33.
33. X. Y. Zhu, M. Wolf, T. Huett, and J. M. White, J. Chem. Phys. 97, 5868 (1992).
http://dx.doi.org/10.1063/1.463746
34.
34. C. Yuan and J. T. Yates Jr., J. Chem. Phys. 138, 154303 (2013).
http://dx.doi.org/10.1063/1.4800943
35.
35. T. G. Slanger and G. Black, J. Chem. Phys. 68, 1844 (1978).
http://dx.doi.org/10.1063/1.435905
36.
36. D. A. Bahr and R. A. Baragiola, Astrophys. J. 761, 36 (2012).
http://dx.doi.org/10.1088/0004-637X/761/1/36
37.
37. K. Kim, J. Quant. Spectrosc. Radiat. Transf. 30, 413 (1983).
http://dx.doi.org/10.1016/0022-4073(83)90104-8
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/15/10.1063/1.4800929
Loading
/content/aip/journal/jcp/138/15/10.1063/1.4800929
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/15/10.1063/1.4800929
2013-04-17
2014-09-20

Abstract

The photochemical decomposition of CO2 (ice) at 75 K by Lyman-α radiation (10.2 eV) has been studied using transmission infrared spectroscopy. An isotope effect in the decomposition of the CO2 molecule in the ice has been discovered, favoring 12CO2 photodecomposition over 13CO2 by about 10%. The effect is caused by electronic energy transfer from the excited CO2 molecule to the ice matrix, which favors quenching of the heavier electronically-excited 13CO2 molecule over 12CO2. The effect is similar to the Menzel-Gomer-Redhead isotope effect in desorption from adsorbed molecules on surfaces when electronically excited. An enhancement of the rate of formation of lattice-trapped CO and CO3 species is observed for the photolysis of the 12CO2 molecule compared to the 13CO2 molecule in the ice. Only 0.5% of the primary photoexcitation results in O–CO bond dissociation to produce trapped-CO and trapped-CO3 product molecules and the majority of the electronically-excited CO2 molecules return to the ground state. Here either vibrational relaxation occurs (majority process) or desorption of CO2 occurs (minority process) from highly vibrationally-excited CO2 molecules in the ice. The observation of the 12C/13C isotope effect in the Lyman-α induced photodecomposition of CO2 (ice) suggests that over astronomical time scales the isotope enrichment effect may distort historical information derived from isotope ratios in space wherever photochemistry can occur.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/15/1.4800929.html;jsessionid=7h1fuunc529b7.x-aip-live-06?itemId=/content/aip/journal/jcp/138/15/10.1063/1.4800929&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Isotope effect in the photochemical decomposition of CO2 (ice) by Lyman-α radiation
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/15/10.1063/1.4800929
10.1063/1.4800929
SEARCH_EXPAND_ITEM