1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Nonlinear femtosecond laser induced scanning tunneling microscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/15/10.1063/1.4800965
1.
1. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).
http://dx.doi.org/10.1103/PhysRevLett.49.57
2.
2. R. J. Hamers and D. G. Cahill, Appl. Phys. Lett. 57, 2031 (1990).
http://dx.doi.org/10.1063/1.103997
3.
3. V. Gerstner, A. Knoll, W. Pfeiffer, A. Thon, and G. Gerber, J. Appl. Phys. 88, 4851 (2000).
http://dx.doi.org/10.1063/1.1290706
4.
4. S. Grafström, J. Appl. Phys. 91, 1717 (2002).
http://dx.doi.org/10.1063/1.1432113
5.
5. R. J. Hamers and D. G. Cahill, J. Vac. Sci. Technol. B 9, 514 (1991).
http://dx.doi.org/10.1116/1.585559
6.
6. M. J. Feldstein, P. Vöhringer, W. Wang, and N. F. Scherer, J. Phys. Chem. 100, 4739 (1996).
http://dx.doi.org/10.1021/jp9517918
7.
7. O. Takeuchi, M. Aoyama, R. Oshima, Y. Okada, H. Oigawa, N. Sano, H. Shigekawa, R. Morita, and M. Yamashita, Appl. Phys. Lett. 85, 3268 (2004).
http://dx.doi.org/10.1063/1.1804238
8.
8. S. Yoshida, Y. Terada, R. Oshima, O. Takeuchi, and H. Shigekawa, Nanoscale 4, 757 (2012).
http://dx.doi.org/10.1039/c2nr11551d
9.
9. A. Dolocan, D. P. Acharya, P. Zahl, P. Sutter, and N. Camillone III, J. Phys. Chem. C 115, 10033 (2011).
http://dx.doi.org/10.1021/jp111875f
10.
10. S. W. Wu and W. Ho, Phys. Rev. B 82, 085444 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.085444
11.
11. J. Lee, S. M. Perdue, D. Whitmore, and V. A. Apkarian, J. Chem. Phys. 133, 104706 (2010).
http://dx.doi.org/10.1063/1.3490398
12.
12. A. Sanchez, C. F. Davis, K. C. Liu, and A. Javan, J. Appl. Phys. 49, 5270 (1978).
http://dx.doi.org/10.1063/1.324426
13.
13. N. M. Miskovsky, P. H. Cutler, A. Mayer, B. L. Weiss, B. Willis, T. E. Sullivan, and P. B. Lerner, J. Nanotechnol. 2012, 512379.
http://dx.doi.org/10.1155/2012/512379
14.
14. P. K. Tien and J. P. Gordon, Phys. Rev. 129, 647 (1963).
http://dx.doi.org/10.1103/PhysRev.129.647
15.
15. M. Buttiker and R. Landauer, Phys. Scr. 32, 429 (1985).
http://dx.doi.org/10.1088/0031-8949/32/4/031
16.
16. A. Thon, M. Merschdorf, W. Pfeifer, T. Klamroth, P. Saalfrank, and D. Diesing, Appl. Phys. A 78, 189 (2004).
http://dx.doi.org/10.1007/s00339-003-2314-2
17.
17. S. W. Wu, N. Ogawa, and W. Ho, Science 312, 1362 (2006).
http://dx.doi.org/10.1126/science.1124881
18.
18. J. G. Simmons, J. Appl. Phys. 34, 1793 (1963).
http://dx.doi.org/10.1063/1.1702682
19.
19. R. H. Fowler and L. Nordheim, Proc. R. Soc. A 119, 173 (1928).
http://dx.doi.org/10.1098/rspa.1928.0091
20.
20. M. Heiblum, S. Wang, J. Whinnery, and T. K. Gustafson, IEEE J. Quantum Electron. 14, 159 (1978).
http://dx.doi.org/10.1109/JQE.1978.1069765
21.
21. J. P. Litz, J. P. Camden, and D. J. Masiello, J. Phys. Chem. Lett. 2, 1695 (2011).
http://dx.doi.org/10.1021/jz200743t
22.
22. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, Nature (London) 491, 574 (2012).
http://dx.doi.org/10.1038/nature11653
23.
23. J. F. Jia, K. Inoue, H. Hasegawa, W. S. Yang, and T. Sakurai, Phys. Rev. B 58, 1193 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.1193
24.
24. J. Freund, J. Halbritter, and J. K. H. Horber, Microsc. Res. Tech. 44, 327 (1999).
http://dx.doi.org/10.1002/(SICI)1097-0029(19990301)44:5<327::AID-JEMT3>3.0.CO;2-E
25.
25. H. Petek and S. Ogawa, Prog. Surf. Sci. 56, 239 (1997).
http://dx.doi.org/10.1016/S0079-6816(98)00002-1
26.
26. C. Guillon, P. Langot, N. D. Fatti, and F. Vallee, Proc. SPIE 5352, 65 (2004).
http://dx.doi.org/10.1117/12.532218
27.
27. C. Sammet, M. Völcker, W. Krieger, and H. Walther, J. Appl. Phys. 78, 6477 (1995).
http://dx.doi.org/10.1063/1.360533
28.
28. W. Li and L. E. Reichl, Phys. Rev. B 60, 15732 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.15732
29.
29. I. Urdaneta, A. Keller, O. Atabek, and V. Mujica, J. Chem. Phys. 127, 154110 (2007).
http://dx.doi.org/10.1063/1.2787656
30.
30. M. J. Hagmann, A. Efimov, A. J. Taylor, and D. A. Yarotski, Appl. Phys. Lett. 99, 011112 (2011).
http://dx.doi.org/10.1063/1.3607482
31.
31. M. J. Hagmann, S. Pandey, A. Nahata, A. J. Taylor, and D. A. Yarotski, Appl. Phys. Lett. 101, 231102 (2012).
http://dx.doi.org/10.1063/1.4768952
32.
32. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).
33.
33. M. Grifoni and P. Hänggi, Phys. Rep. 304, 229 (1998).
http://dx.doi.org/10.1016/S0370-1573(98)00022-2
34.
34.COMSOL Multiphysics Modeling Software, version 4.2.
35.
35. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.4370
36.
36. J. H. Weaver, Phys. Rev. B 12, 1293 (1975).
http://dx.doi.org/10.1103/PhysRevB.12.1293
37.
37. H. Kawano, Prog. Surf. Sci. 83, 1 (2008).
http://dx.doi.org/10.1016/j.progsurf.2007.11.001
38.
38. J. Simmons, J. Appl. Phys. 35, 2472 (1964).
http://dx.doi.org/10.1063/1.1702884
39.
39. D. M. Volkov, Z. Phys. 94, 250 (1935).
http://dx.doi.org/10.1007/BF01331022
40.
40. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, Nat. Commun. 3, 825 (2012).
http://dx.doi.org/10.1038/ncomms1806
41.
41. S. L. Kleinman, R. R. Frontiera, A.-I. Henry, J. A. Deringer, and R. P. Van Duyne, Phys. Chem. Chem. Phys. 15, 21 (2013).
http://dx.doi.org/10.1039/c2cp42598j
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/15/10.1063/1.4800965
Loading
/content/aip/journal/jcp/138/15/10.1063/1.4800965
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/15/10.1063/1.4800965
2013-04-18
2014-12-28

Abstract

We demonstrate ultrafast laser driven nonlinear scanning tunneling microscopy (STM), under ambient conditions. The design is an adaptation of the recently introduced cross-polarized double beat method, whereby z-polarized phase modulated fields are tightly focused at a tunneling junction consisting of a sharp tungsten tip and an optically transparent gold film as substrate. We demonstrate the prerequisites for ultrafast time-resolved STM through an operative mechanism of nonlinear laser field-driven tunneling. The spatial resolution of the nonlinear laser driven STM is determined by the local field intensity. Resolution of 0.3 nm–10 nm is demonstrated for the intensity dependent, exponential tunneling range. The demonstration is carried out on a junction consisting of tungsten tip and gold substrate. Nano-structured gold is used for imaging purposes, to highlight junction plasmon controlled tunneling in the conductivity limit.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/15/1.4800965.html;jsessionid=1hegbxpgnulqt.x-aip-live-06?itemId=/content/aip/journal/jcp/138/15/10.1063/1.4800965&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nonlinear femtosecond laser induced scanning tunneling microscopy
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/15/10.1063/1.4800965
10.1063/1.4800965
SEARCH_EXPAND_ITEM