1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
A novel technique for measurement of thermal rate constants and temperature dependences of dissociative recombination: CO2 +, CF3 +, N2O+, C7H8 +, C7H7 +, C6H6 +, C6H5 +, C5H6 +, C4H4 +, and C3H3 +
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/15/10.1063/1.4801657
1.
1. M. Larsson and A. E. Orel, Dissociative Recombination of Molecular Ions (Cambridge University Press, Cambridge, 2008).
2.
2. A. I. Florescu-Mitchell and J. B. A. Mitchell, Phys. Rep. 430, 277374 (2006).
http://dx.doi.org/10.1016/j.physrep.2006.04.002
3.
3. M. A. Biondi and S. C. Brown, Phys. Rev. 76, 16971700 (1949).
http://dx.doi.org/10.1103/PhysRev.76.1697
4.
4. M. R. Mahdavi, J. B. Hasted, and M. M. Nakshbandi, J. Phys. B 4, 17261737 (1971).
http://dx.doi.org/10.1088/0022-3700/4/12/020
5.
5. D. Smith, N. G. Adams, A. G. Dean, and M. J. Church, J. Phys. D 8, 141152 (1975).
http://dx.doi.org/10.1088/0022-3727/8/2/007
6.
6. N. G. Adams and C. D. M. L. McLain, J. Phys.: Conf. Ser. 192, 012004 (2009).
http://dx.doi.org/10.1088/1742-6596/192/1/012004
7.
7. J. B. A. Mitchell and C. Rebrion-Rowe, Int. Rev. Phys. Chem. 16, 201213 (1997).
http://dx.doi.org/10.1080/014423597230271
8.
8. L. Lehfaoui, C. Rebrion-Rowe, S. Laube, J. B. A. Mitchell, and B. R. Rowe, J. Chem. Phys. 106, 54065412 (1997).
http://dx.doi.org/10.1063/1.473566
9.
9. C. Rebrion-Rowe, L. Lehfaoui, B. R. Rowe, and J. B. A. Mitchell, J. Chem. Phys. 108, 71857189 (1998).
http://dx.doi.org/10.1063/1.476135
10.
10. C. Rebrion-Rowe, T. Mostefaoui, S. Laube, and J. B. A. Mitchell, J. Chem. Phys. 113, 30393045 (2000).
http://dx.doi.org/10.1063/1.1286974
11.
11. N. S. Shuman, T. M. Miller, A. A. Viggiano, and J. Troe, Adv. At., Mol., Opt. Phys. 61, 209294 (2012).
http://dx.doi.org/10.1016/B978-0-12-396482-3.00005-3
12.
12. T. M. Miller, N. S. Shuman, and A. A. Viggiano, J. Chem. Phys. 136, 204306 (2012).
http://dx.doi.org/10.1063/1.4720499
13.
13. N. S. Shuman, T. M. Miller, A. A. Viggiano, E. D. Luzik, Jr., and N. Hazari, J. Chem. Phys. 134, 044323 (2011).
http://dx.doi.org/10.1063/1.3529423
14.
14. N. S. Shuman, T. M. Miller, J. F. Friedman, A. A. Viggiano, S. Maeda, and K. Morokuma, J. Chem. Phys. 134, 094310 (2011).
http://dx.doi.org/10.1063/1.3549139
15.
15. N. S. Shuman, T. M. Miller, R. J. Bemish, and A. A. Viggiano, Phys. Rev. Lett. 106, 018302 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.018302
16.
16. N. S. Shuman, T. M. Miller, N. Hizari, E. D. Luzik, and A. A. Viggiano, J. Chem. Phys. 133, 234304 (2010).
http://dx.doi.org/10.1063/1.3520150
17.
17. S. A. Haughey, T. A. Field, J. Langer, N. S. Shuman, T. M. Miller, J. F. Friedman, and A. A. Viggiano, J. Chem. Phys. 137, 054310 (2012).
http://dx.doi.org/10.1063/1.4738759
18.
18. N. S. Shuman, T. M. Miller, J. F. Friedman, A. A. Viggiano, A. I. Maergoiz, and J. Troe, J. Chem. Phys. 135, 054306 (2011).
http://dx.doi.org/10.1063/1.3614471
19.
19. J. F. Friedman, T. M. Miller, J. K. Friedman-Schaffer, A. A. Viggiano, G. K. Rekha, and A. E. Stevens, J. Chem. Phys. 128, 104303 (2008).
http://dx.doi.org/10.1063/1.2831391
20.
20. T. M. Miller, Adv. At., Mol., Opt. Phys. 51, 299342 (2005).
http://dx.doi.org/10.1016/S1049-250X(05)51018-8
21.
21. P. Španěl, Int. J. Mass Spectrom. Ion Process. 149–150, 299310 (1995).
http://dx.doi.org/10.1016/0168-1176(95)04264-L
22.
22. N. G. Adams and D. Smith, in Techniques for the Study of Ion-Molecule Reactions, edited by J. M. Farrar and W. H. Saunders, Jr. (John Wiley and Sons, New York, 1988), pp. 165220.
23.
23. V. G. Anicich, J. Phys. Chem. Ref. Data 22, 14691569 (1993).
http://dx.doi.org/10.1063/1.555940
24.
24. T. Su and W. J. Chesnavich, J. Chem. Phys. 76, 51835185 (1982).
http://dx.doi.org/10.1063/1.442828
25.
25. S. T. Arnold, I. Dotan, S. Williams, A. A. Viggiano, and R. A. Morris, J. Phys. Chem. A 104, 928934 (2000).
http://dx.doi.org/10.1021/jp9928199
26.
26. S. Williams, A. J. Midey, S. T. Arnold, R. A. Morris, A. A. Viggiano, Y.-H. Chiu, D. J. Levandier, R. A. Dressler, and M. R. Berman, J. Phys. Chem. A 104, 1033610346 (2000).
http://dx.doi.org/10.1021/jp001428n
27.
27. J. A. Jackson, S. G. Lias, and P. Ausloos, J. Am. Chem. Soc. 99, 75157521 (1977).
http://dx.doi.org/10.1021/ja00465a020
28.
28. R. C. Dunbar, J. Am. Chem. Soc. 97, 1382 (1975).
http://dx.doi.org/10.1021/ja00839a016
29.
29. F. J. Mehr and M. A. Biondi, Phys. Rev. 181, 264271 (1969).
http://dx.doi.org/10.1103/PhysRev.181.264
30.
30. J. L. McLain, V. Poterya, C. D. Molek, L. M. Babcock, and N. G. Adams, J. Phys. Chem. A 108, 67046708 (2004).
http://dx.doi.org/10.1021/jp040215l
31.
31. T. Mostefaoui, S. Laube, G. Gautier, C. Rebrion-Rowe, B. R. Rowe, and J. B. A. Mitchell, J. Phys. B. 32, 5247 (1999).
http://dx.doi.org/10.1088/0953-4075/32/22/303
32.
32. T. Gougousi, M. F. Golde, and R. Johnsen, Chem. Phys. Lett. 265, 399403 (1997).
http://dx.doi.org/10.1016/S0009-2614(96)01488-1
33.
33. R. Peverall, S. Rosan, J. R. Peterson, M. Larsson, A. Al-Khalili, L. Vikor, J. Semaniak, R. Bobbenkamp, A. Le Padellec, A. N. Maurellis, and W. J. van der Zande, J. Chem. Phys. 114, 66796689 (2001).
http://dx.doi.org/10.1063/1.1349079
34.
34. A. Petrignani, P. C. Cosby, F. Hellberg, R. D. Thomas, M. Larsson, and W. J. van der zande, J. Chem. Phys. 122, 014302 (2005).
http://dx.doi.org/10.1063/1.1825991
35.
35. E. Alge, N. G. Adams, and D. Smith, J. Phys. B 16, 14331444 (1983).
http://dx.doi.org/10.1088/0022-3700/16/8/017
36.
36. P. Spanel, L. Dittrichova, and D. Smith, Int. J. Mass Spectrom. Ion Process. 129, 183191 (1993).
http://dx.doi.org/10.1016/0168-1176(93)87041-P
37.
37. F. L. Walls and G. H. Dunn, J. Geophys. Res. 79, 19111915, doi:10.1029/JA079i013p01911 (1974).
http://dx.doi.org/10.1029/JA079i013p01911
38.
38. M. Hamberg, W. D. Geppert, S. Rosen, F. Hellberg, A. Ehlerding, V. Zhaunerchyk, M. Kaminska, R. D. Thomas, M. af Ugglas, A. Kallberg, A. Simonsson, A. Paal, and M. Larssona, Phys. Chem. Chem. Phys. 7(8), 16641668 (2005).
http://dx.doi.org/10.1039/b417704e
39.
39. K. Seiersen, A. Al-Khalili, O. Heber, M. J. Jensen, I. B. Nielsen, H. B. Petersen, C. P. Safvan, and L. H. Andersen, Phys. Rev. A 68, 022708 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.022708
40.
40. C. S. Weller and M. A. Biondi, Phys. Rev. Lett. 19, 5961 (1967).
http://dx.doi.org/10.1103/PhysRevLett.19.59
41.
41. R. A. Gutcheck and E. C. Zipf, J. Geophys. Res. 78, 54295436, doi:10.1029/JA078i025p05429 (1973).
http://dx.doi.org/10.1029/JA078i025p05429
42.
42. A. A. Viggiano, A. Ehlerding, F. Hellberg, R. D. Thomas, V. Zhaunerchyk, W. D. Geppert, H. Montaigne, M. Larsson, M. Kaminska, and F. Osterdahl, J. Chem. Phys. 122, 226101 (2005).
http://dx.doi.org/10.1063/1.1926283
43.
43. M. Geoghegan, N. G. Adams, and D. Smith, J. Phys. B 24, 25892599 (1991).
http://dx.doi.org/10.1088/0953-4075/24/10/015
44.
44. A. Ehlerding, A. A. Viggiano, F. Hellberg, R. D. Thomas, V. Zhaunerchyk, W. D. Geppert, H. Montaigne, M. Kaminska, F. Osterdahl, M. af Ugglas, M. Larsson, O. Novotny, J. B. A. Mitchell, J. L. LeGarrec, A. I. Florescu-Mitchell, C. Rebrion-Rowe, A. Svendsen, M. A. El Ghazaly, and L. H. Anderseng, J. Phys. B 39, 805812 (2006).
http://dx.doi.org/10.1088/0953-4075/39/4/006
45.
45. G. Angelova, J. L. LeGarrec, C. Rebrion-Rowe, B. R. Rowe, O. Novotny, and J. B. A. Mitchell, J. Phys. B 37, 41354141 (2004).
http://dx.doi.org/10.1088/0953-4075/37/20/008
46.
46. S. T. Arnold, S. Williams, I. Dotan, A. J. Midey, R. A. Morris, and A. A. Viggiano, J. Phys. Chem. A 103, 84218432 (1999).
http://dx.doi.org/10.1021/jp991928k
47.
47. P. Ausloos, J. Am. Chem. Soc. 104, 52595265 (1982).
http://dx.doi.org/10.1021/ja00384a001
48.
48. J. L. McLain, V. Poterya, C. D. Molek, D. M. Jackson, L. M. Babcock, and N. G. Adams, J. Phys. Chem. A 109, 51195123 (2005).
http://dx.doi.org/10.1021/jp0444159
49.
49. S. M. Graham and J. M. Goodings, Int. J. Mass Spectrom. Ion Process. 56(2), 205222 (1984).
http://dx.doi.org/10.1016/0168-1176(84)85044-2
50.
50. A. A. Viggiano, A. Ehlerding, S. T. Arnold, and M. Larsson, J. Phys.: Conf. Ser. 4, 191197 (2005).
http://dx.doi.org/10.1088/1742-6596/4/1/027
51.
51. H. Abouelaziz, J. C. Gomet, D. Pasquerault, B. R. Rowe, and J. B. A. Mitchell, J. Chem. Phys. 99, 237243 (1993).
http://dx.doi.org/10.1063/1.465801
52.
52. D. Osborne, P. A. Lawson, and N. G. Adams, Int. J. Mass Spectrom. 305(1), 3539 (2011).
http://dx.doi.org/10.1016/j.ijms.2011.05.003
53.
53. P. M. Mul and J. W. McGowan, Astrophys. J. 237, 749751 (1980).
http://dx.doi.org/10.1086/157921
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/15/10.1063/1.4801657
Loading
/content/aip/journal/jcp/138/15/10.1063/1.4801657
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/15/10.1063/1.4801657
2013-04-18
2014-12-28

Abstract

A novel technique using a flowing afterglow-Langmuir probe apparatus for measurement of temperature dependences of rate constants for dissociative recombination (DR) is presented. Low (∼1011 cm−3) concentrations of a neutral precursor are added to a noble gas/electron afterglow plasma thermalized at 300–500 K. Charge exchange yields one or many cation species, each of which may undergo DR. Relative ion concentrations are monitored at a fixed reaction time while the initial plasma density is varied between 109 and 1010 cm−3. Modeling of the decrease in concentration of each cation relative to the non-recombining noble gas cation yields the rate constant for DR. The technique is applied to several species (O2 +, CO2 +, CF3 +, N2O+) with previously determined 300 K values, showing excellent agreement. The measurements of those species are extended to 500 K, with good agreement to literature values where they exist. Measurements are also made for a range of CnHm + (C7H7 +, C7H8 +, C5H6 +, C4H4 +, C6H5 +, C3H3 +, and C6H6 +) derived from benzene and toluene neutral precursors. CnHm + DR rate constants vary from 8–12 × 10−7 cm3 s−1 at 300 K with temperature dependences of approximately T−0.7. Where prior measurements exist these results are in agreement, with the exception of C3H3 + where the present results disagree with a previously reported flat temperature dependence.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/15/1.4801657.html;jsessionid=1sur4638r1bw2.x-aip-live-03?itemId=/content/aip/journal/jcp/138/15/10.1063/1.4801657&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A novel technique for measurement of thermal rate constants and temperature dependences of dissociative recombination: CO2+, CF3+, N2O+, C7H8+, C7H7+, C6H6+, C6H5+, C5H6+, C4H4+, and C3H3+
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/15/10.1063/1.4801657
10.1063/1.4801657
SEARCH_EXPAND_ITEM