1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Chemical bonding in carbon dimer isovalent series from the natural orbital functional theory perspective
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/15/10.1063/1.4802585
1.
1. M. Labarca and O. Lombardi, Found. Chem. 12, 149 (2010).
http://dx.doi.org/10.1007/s10698-010-9086-5
2.
2. J. Autschbach, J. Chem. Educ. 89, 1032 (2012).
http://dx.doi.org/10.1021/ed200673w
3.
3. J. M. Zuo, M. Kim, M. O’Keeffe, and J. C. H. Spence, Nature (London) 401, 49 (1999).
http://dx.doi.org/10.1038/43403
4.
4. J. Itatatni, J. Levesque, D. Zeidler, H. Nukura, H. Pepin, J. C. Kieffer, P. B. Corkum, and D. M. Villenueve, Nature (London) 432, 867 (2004).
http://dx.doi.org/10.1038/nature03183
5.
5. W. H. E. Schwarz, Angew. Chem., Int. Ed. 45, 1508 (2006).
http://dx.doi.org/10.1002/anie.200501333
6.
6. J. F. Ogilvie, Found. Chem. 13, 87 (2011).
http://dx.doi.org/10.1007/s10698-011-9113-1
7.
7. P. Mulder, HYLE Int. J. Philos. Chem. 17, 24 (2011).
8.
8. P. B. Armentrout, Science 251, 175 (1991).
http://dx.doi.org/10.1126/science.251.4990.175
9.
9. C. Edmiston and K. Ruedenberg, Rev. Mod. Phys. 35, 457 (1963).
http://dx.doi.org/10.1103/RevModPhys.35.457
10.
10. F. Jensen, Introduction to Computational Chemistry (John Wiley & Sons, New York, 1999).
11.
11. S. S. Shaik and P. C. Hiberty, A Chemist's Guide to Valence Bond Theory (John Wiley & Sons, New York, 2008).
12.
12. R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, New York, 1994).
13.
13. V. M. S. Gil, Orbitals in Chemistry: A Modern Guide for Students (Cambridge University Press, 2010).
14.
14. L. Gagliardi and B. O. Ross, Nature (London) 433, 848 (2005).
http://dx.doi.org/10.1038/nature03249
15.
15. S. Shaik, D. Danovich, W. Wu, P. Su, H. S. Rzepa, and P. C. Hiberty, Nat. Chem. 4, 195 (2012).
http://dx.doi.org/10.1038/nchem.1263
16.
16. S. Shaik, H. S. Rzepa, and R. Hoffmann, Angew. Chem., Int. Ed. 52, 3020 (2013).
http://dx.doi.org/10.1002/anie.201208206
17.
17. P. Su, S. Shaik, and P. C. Hiberty, J. Chem. Theory Comput. 7, 121 (2011).
http://dx.doi.org/10.1021/ct100577v
18.
18. M. Piris, Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules, Advances in Chemical Physics Vol. 134, edited by D. A. Mazziotti (Wiley, New York, 2007).
19.
19. D. R. Rohr, K. Pernal, O. V. Gritsenko, and E. J. Baerends, J. Chem. Phys. 129, 164105 (2008).
http://dx.doi.org/10.1063/1.2998201
20.
20. S. Sharma, K. Dewhurst, N. N. Lathiotakis, and E. K. U. Gross, Phys. Rev. B 78, 201103 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.201103
21.
21. J. M. Matxain, M. Piris, J. M. Mercero, X. Lopez, and J. M. Ugalde, Chem. Phys. Lett. 531, 272 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.02.041
22.
22. J. M. Matxain, M. Piris, J. Uranga, X. Lopez, G. Merino, and J. M. Ugalde, ChemPhysChem 13, 2297 (2012).
http://dx.doi.org/10.1002/cphc.201200205
23.
23. F. Ruipérez, M. Piris, J. M. Ugalde, and J. M. Matxain, Phys. Chem. Chem. Phys. 15, 2055 (2013).
http://dx.doi.org/10.1039/c2cp43559d
24.
24. M. Piris, J. M. Matxain, X. Lopez, and J. M. Ugalde, Theor. Chem. Acc. 132, 1298 (2013).
http://dx.doi.org/10.1007/s00214-012-1298-4
25.
25.See supplementary material at http://dx.doi.org/10.1063/1.4802585 for a detailed description of NOF theory. [Supplementary Material]
26.
26. M. Piris, X. Lopez, F. Ruipérez, J. M. Matxain, and J. M. Ugalde, J. Chem. Phys. 134, 164102 (2011).
http://dx.doi.org/10.1063/1.3582792
27.
27. X. Lopez, M. Piris, J. M. Matxain, F. Ruipérez, and J. M. Ugalde, ChemPhysChem 12, 1673 (2011).
http://dx.doi.org/10.1002/cphc.201100190
28.
28. X. Lopez, F. Ruipérez, M. Piris, J. M. Matxain, E. Matito, and J. M. Ugalde, J. Chem. Theory Comput. 8, 2646 (2012).
http://dx.doi.org/10.1021/ct300414t
29.
29. J. M. Matxain, F. Ruipérez, and M. Piris, “Computational study of Be2 using Piris natural orbital functionals,” J. Mol. Model. (published online).
http://dx.doi.org/10.1007/s00894-012-1548-3
30.
30. M. Piris, Compt. Theor. Chem. 1003, 123 (2013).
http://dx.doi.org/10.1016/j.comptc.2012.07.016
31.
31. R. J. Gillespie and R. J. Nyholm, Q. Rev., Chem. Soc. 11, 339 (1957).
http://dx.doi.org/10.1039/qr9571100339
32.
32. H. A. Bent, Chem. Rev. 61, 275 (1961).
http://dx.doi.org/10.1021/cr60211a005
33.
33. L. Pauling, J. Am. Chem. Soc. 53, 1367 (1931).
http://dx.doi.org/10.1021/ja01355a027
34.
34. B. O. Roos, A. C. Borin, and L. Gagliardi, Angew. Chem., Int. Ed. 46, 1469 (2007).
http://dx.doi.org/10.1002/anie.200603600
35.
35. B. O. Roos, P. A. Malmqvist, and L. Gagliardi, J. Am. Chem. Soc. 128, 17000 (2006).
http://dx.doi.org/10.1021/ja066615z
36.
36. H. M. Rosenstock, K. Draxl, B. W. Steiner, and J. T. Herron, Energetics of Gaseous Ions, J. Phys. Chem. Ref. Data Vol. 6, Supplement No. 1 (American Institute of Physics, 1977).
37.
37.Calculated at the CCSD(T)/cc-pV(T+d)Z level of theory. Available at http://cccbdb.nist.gov/ie3.asp?method=12&basis=27.
38.
38. C. J. Reid, Int. J. Mass Spectrom. Ion Process 127, 147 (1993).
http://dx.doi.org/10.1016/0168-1176(93)87087-9
39.
39. C. B. Winstead, S. J. Paukstis, J. L. Walters, and J. L. Gole, J. Chem. Phys. 102, 1877 (1995).
http://dx.doi.org/10.1063/1.468752
40.
40. B. H. Boo and P. B. Armentrout, J. Am. Chem. Soc. 109, 3549 (1987).
http://dx.doi.org/10.1021/ja00246a010
41.
41. M. Piris, J. M. Matxain, X. Lopez, and J. M. Ugalde, J. Chem. Phys. 136, 174116 (2012).
http://dx.doi.org/10.1063/1.4709769
42.
42. C. W. Bauschlicher and S. R. Langhoff, J. Chem. Phys. 87, 2919 (1987).
http://dx.doi.org/10.1063/1.453080
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/15/10.1063/1.4802585
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The PNOF5 natural orbitals with their corresponding occupation numbers (left) and canonical orbitals with their corresponding orbital energies, in eV, (right) of the carbon dimer.

Image of FIG. 2.

Click to view

FIG. 2.

Schematic view of the interaction occurring between the sp 3 orbitals in the C2 dimer.

Image of FIG. 3.

Click to view

FIG. 3.

The PNOF5 molecular natural orbitals with their corresponding occupation number (left) and canonical orbitals with their corresponding orbital energies, in eV, (right) of the silicon dimer.

Tables

Generic image for table

Click to view

Table I.

Calculated EBO for the PNOF5 NO representation. Vertical ionization energies, in eV, calculated as the negative of diagonal values of the Λ matrix in the CO representation, and by the EKT.

Loading

Article metrics loading...

/content/aip/journal/jcp/138/15/10.1063/1.4802585
2013-04-19
2014-04-20

Abstract

The natural orbital functional theory admits two unique representations in the orbital space. On the one hand, we have the natural orbitals themselves that minimize the energy functional, and which afford for a diagonal one-particle reduced density matrix but not for a diagonal Lagrangian orbital energy multipliers matrix. On the other hand, since it is possible to reverse the situation but only once the energy minimization has been achieved, we have the so-called canonical representation, where the Lagrangian orbital energy multipliers matrix is diagonal but the one-particle reduced density matrix is not. Here it is shown that the former representation, the natural orbital representation, accounts nicely for the quadrupole bond character of the ground states of C2, BN, CB, and CN+, and for the double bond order character of the isovalent state of Si2. Similarly, the canonical orbital representation accounts correctly for the ionization spectra of all these species.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/15/1.4802585.html;jsessionid=59i39qdcgc2gd.x-aip-live-01?itemId=/content/aip/journal/jcp/138/15/10.1063/1.4802585&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Chemical bonding in carbon dimer isovalent series from the natural orbital functional theory perspective
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/15/10.1063/1.4802585
10.1063/1.4802585
SEARCH_EXPAND_ITEM