1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Surface hopping modeling of two-dimensional spectra
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/16/10.1063/1.4801519
1.
1. J. Zheng, K. Kwak, J. Ashbury, X. Chen, J. Xie, and M. D. Fayer, Science 309, 1338 (2005).
http://dx.doi.org/10.1126/science.1116213
2.
2. P. Hamm, M. H. Lim, and R. M. Hochstrasser, J. Phys. Chem. B 102, 6123 (1998).
http://dx.doi.org/10.1021/jp9813286
3.
3. E. H. G. Backus, P. H. Nguyen, V. Botan, R. Pfister, A. Moretto, M. Crisma, C. Toniolo, G. Stock, and P. Hamm, J. Phys. Chem. B 112, 9091 (2008).
http://dx.doi.org/10.1021/jp711046e
4.
4. H. S. Chung, M. Khalil, and A. Tokmakoff, J. Phys. Chem. B 108, 15332 (2004).
http://dx.doi.org/10.1021/jp0479926
5.
5. C. Kolano, J. Helbing, M. Kozinski, W. Sander, and P. Hamm, Nature (London) 444, 469 (2006).
http://dx.doi.org/10.1038/nature05352
6.
6. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, Nature (London) 434, 625 (2005).
http://dx.doi.org/10.1038/nature03429
7.
7. J. A. Myers, K. L. M. Lewis, F. D. Fuller, P. F. Tekavec, C. F. Yocum, and J. P. Ogilvie, J. Phys. Chem. Lett. 1, 2774 (2010).
http://dx.doi.org/10.1021/jz100972z
8.
8. M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, Science 333, 1723 (2011).
http://dx.doi.org/10.1126/science.1209206
9.
9. G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, Nature (London) 446, 782 (2007).
http://dx.doi.org/10.1038/nature05678
10.
10. T. Gustavsson, G. Baldachino, J.-C. Mialocq, and S. Pommeret, Chem. Phys. Lett. 236, 587 (1995).
http://dx.doi.org/10.1016/0009-2614(95)00276-A
11.
11. Y. Tanimura and R. Kubo, J. Phys. Soc. Jpn. 58, 101 (1989).
http://dx.doi.org/10.1143/JPSJ.58.101
12.
12. A. Ishizaki and Y. Tanimura, J. Phys. Chem. A 111, 9269 (2007).
http://dx.doi.org/10.1021/jp072880a
13.
13. A. Ishizaki and G. R. Fleming, J. Chem. Phys. 130, 234111 (2009).
http://dx.doi.org/10.1063/1.3155372
14.
14. L. Chen, R. Zheng, Q. Shi, and Y. Yan, J. Chem. Phys. 132, 024505 (2010).
http://dx.doi.org/10.1063/1.3293039
15.
15. C. Olbrich, T. L. C. Jansen, J. Liebers, M. Aghtar, J. Strümpfer, K. Schulten, J. Knoester, and U. Kleinekathöfer, J. Phys. Chem. B 115, 8609 (2011).
http://dx.doi.org/10.1021/jp202619a
16.
16. J. C. Tully, J. Chem. Phys. 93, 1061 (1990).
http://dx.doi.org/10.1063/1.459170
17.
17. T. L. C. Jansen, W. Zhuang, and S. Mukamel, J. Chem. Phys. 121, 10577 (2004).
http://dx.doi.org/10.1063/1.1807824
18.
18. H. Torii, J. Phys. Chem. A 110, 4822 (2006).
http://dx.doi.org/10.1021/jp060014c
19.
19. A. G. Redfield, Advances in Magnetic Resonance, edited by J. S. Waugh (Academic Press, 1965), Vol. 1, pp. 130.
20.
20. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).
21.
21. J. T. Stockburger and H. Grabert, Phys. Rev. Lett. 88, 170407 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.170407
22.
22. H. Wang and M. Thoss, Chem. Phys. 347, 139 (2008).
http://dx.doi.org/10.1016/j.chemphys.2007.12.004
23.
23. G. Stock and W. H. Miller, J. Chem. Phys. 99, 1545 (1993).
http://dx.doi.org/10.1063/1.465323
24.
24. I. Uspenskiy, B. Strodel, and G. Stock, J. Chem. Theory Comput. 2, 1605 (2006).
http://dx.doi.org/10.1021/ct6002127
25.
25. T. L. C. Jansen and J. Knoester, J. Chem. Phys. 127, 234502 (2007).
http://dx.doi.org/10.1063/1.2806179
26.
26. T. L. C. Jansen and J. Knoester, J. Phys. Chem. B 110, 22910 (2006).
http://dx.doi.org/10.1021/jp064795t
27.
27. S. Roy, J. Lessing, G. Meisl, Z. Ganim, A. Tokmakoff, J. Knoester, and T. L. C. Jansen, J. Chem. Phys. 135, 234507 (2011).
http://dx.doi.org/10.1063/1.3665417
28.
28. T. L. C. Jansen and J. Knoester, J. Chem. Phys. 124, 044502 (2006).
http://dx.doi.org/10.1063/1.2148409
29.
29. T. L. C. Jansen, D. Cringus, and M. S. Pshenichnikov, J. Phys. Chem. A 113, 6260 (2009).
http://dx.doi.org/10.1021/jp900480r
30.
30. P. L. McRobbie, G. Hanna, Q. Shi, and E. Geva, Acc. Chem. Res. 42, 1299 (2009).
http://dx.doi.org/10.1021/ar800280s
31.
31. K. Kwac and E. Geva, J. Phys. Chem. B 116, 2856 (2012).
http://dx.doi.org/10.1021/jp211792j
32.
32. P. Ehrenfest, Z. Phys. 45, 455 (1927).
http://dx.doi.org/10.1007/BF01329203
33.
33. C. P. van der Vegte, A. Dijkstra, J. Knoester, and T. L. C. Jansen, “Calculating two-dimensional spectra with the mixed quantum-classical Ehrenfest method,” J. Phys. Chem. A (published online).
http://dx.doi.org/10.1021/jp311668r
34.
34. P. V. Parandekar and J. C. Tully, J. Chem. Theory Comput. 2, 229 (2006).
http://dx.doi.org/10.1021/ct050213k
35.
35. O. V. Prezhdo and P. J. Rossky, J. Chem. Phys. 107, 825 (1997).
http://dx.doi.org/10.1063/1.474382
36.
36. E. Fabiano, T. W. Keal, and W. Thiel, Chem. Phys. 349, 334 (2008).
http://dx.doi.org/10.1016/j.chemphys.2008.01.044
37.
37. T. Nelson, S. Fernandez-Alberti, V. Chernyak, A. E. Roitberg, and S. Tretiak, J. Phys. Chem. B 115, 5402 (2011).
http://dx.doi.org/10.1021/jp109522g
38.
38. P. V. Parandekar and J. C. Tully, J. Chem. Phys. 122, 094102 (2005).
http://dx.doi.org/10.1063/1.1856460
39.
39. J. R. Schmidt, P. V. Parandekar, and J. C. Tully, J. Chem. Phys. 129, 044104 (2008).
http://dx.doi.org/10.1063/1.2955564
40.
40. V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (John Wiley & Sons, 2004).
41.
41. D. J. Griffiths, Introduction to Quantum Mechanics (Prentice Hall, 1995).
42.
42. J. C. Tully, Faraday Discuss. 110, 407 (1998).
http://dx.doi.org/10.1039/a801824c
43.
43. J. C. Tully and R. K. Preston, J. Chem. Phys. 55, 562 (1971).
http://dx.doi.org/10.1063/1.1675788
44.
44. S. Hammes-Schiffer and T. C. Tully, J. Chem. Phys. 101, 4657 (1994).
http://dx.doi.org/10.1063/1.467455
45.
45. D. F. Coker and L. Xiao, J. Chem. Phys. 102, 496 (1995).
http://dx.doi.org/10.1063/1.469428
46.
46. U. Müller and G. Stock, J. Chem. Phys. 107, 6230 (1997).
http://dx.doi.org/10.1063/1.474288
47.
47. P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, 2011).
48.
48.This follows from Fig. 1(d) of D. Abramavicius et al., Biophys J. 94, 3613 (2008), considering that excitation to the lowest-energy singly excited state is only weakly allowed and that the energy of the doubly excited state amounts to the sum of both singly excited energies.
http://dx.doi.org/10.1529/biophysj.107.123455
49.
49. S. A. Fischer, C. T. Chapman, and X. Li, J. Chem. Phys. 135, 144102 (2011).
http://dx.doi.org/10.1063/1.3646920
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/16/10.1063/1.4801519
Loading
/content/aip/journal/jcp/138/16/10.1063/1.4801519
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/16/10.1063/1.4801519
2013-04-23
2014-08-28

Abstract

Recently, two-dimensional (2D) electronic spectroscopy has become an important tool to unravel the excited state properties of complex molecular assemblies, such as biological light harvesting systems. In this work, we propose a method for simulating 2D electronic spectra based on a surface hopping approach. This approach self-consistently describes the interaction between photoactive chromophores and the environment, which allows us to reproduce a spectrally observable dynamic Stokes shift. Through an application to a dimer, the method is shown to also account for correct thermal equilibration of quantum populations, something that is of great importance for processes in the electronic domain. The resulting 2D spectra are found to nicely agree with hierarchy of equations of motion calculations. Contrary to the latter, our method is unrestricted in describing the interaction between the chromophores and the environment, and we expect it to be applicable to a wide variety of molecular systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/16/1.4801519.html;jsessionid=1ppf7fsvne4l9.x-aip-live-02?itemId=/content/aip/journal/jcp/138/16/10.1063/1.4801519&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Surface hopping modeling of two-dimensional spectra
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/16/10.1063/1.4801519
10.1063/1.4801519
SEARCH_EXPAND_ITEM