1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Size-selective self-assembly of magnetic Mn nanoclusters on Si(111)
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/16/10.1063/1.4801924
1.
1. P. A. Bennett, D. G. Cahill, and M. Copel, Phys. Rev. Lett. 73, 452 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.452
2.
2. P. V. Radovanovic, C. J. Barrelet, S. Gradečak, F. Qian, and C. M. Lieber, Nano Lett. 5, 1407 (2005).
http://dx.doi.org/10.1021/nl050747t
3.
3. K. R. Simov, C. A. Nolph, and P. Reinke, J. Phys. Chem. C 116, 1670 (2012).
http://dx.doi.org/10.1021/jp206021r
4.
4. L. Vitali, M. G. Ramsey, and F. P. Netzer, Phys. Rev. Lett. 83, 316 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.316
5.
5. J. L. Li, J. F. Jia, X. J. Liang, X. Liu, J. Z. Wang, Q. K. Xue, Z. Q. Li, J. S. Tse, Z. Zhang, and S. B. Zhang, Phys. Rev. Lett. 88, 066101 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.066101
6.
6. M. Y. Lai and Y. L. Wang, Phys. Rev. B 64, 241404 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.241404
7.
7. J. F. Jia, X. Liu, J. Z. Wang, J. L. Li, X. S. Wang, Q. K. Xue, Z. Q. Li, Z. Y. Zhang, and S. B. Zhang, Phys. Rev. B 66, 165412 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.165412
8.
8. J. F. Jia, J. Z. Wang, X. Liu, Q. K. Xue, Z. Q. Li, Y. Kawazoe, and S. B. Zhang, Appl. Phys. Lett. 80, 3186 (2002).
http://dx.doi.org/10.1063/1.1474620
9.
9. V. G. Kotlyar, A. V. Zotov, A. A. Saranin, T. V. Kasyanova, M. A. Cherevik, I. V. Pisarenko, and V. G. Lifshits, Phys. Rev. B 66, 165401 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.165401
10.
10. K. H. Wu, Y. Fujikawa, T. Nagao, Y. Hasegawa, K. S. Nakayama, Q. K. Xue, E. G. Wang, T. Briere, V. Kumar, Y. Kawazoe, S. B. Zhang, and T. Sakurai, Phys. Rev. Lett. 91, 126101 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.126101
11.
11. C. Zhang, G. Chen, K. D. Wang, H. W. Yang, T. Su, C. T. Chan, M. M. T. Loy, and X. D. Xiao, Phys. Rev. Lett. 94, 176104 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.176104
12.
12. I. Ošt’ádal, P. Kocán, P. Sobotík, and J. Pudl, Phys. Rev. Lett. 95, 146101 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.146101
13.
13. G. Lee, C. G. Hwang, N. D. Kim, J. Chung, J. S. Kim, and S. Lee, Phys. Rev. B 76, 245409 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.245409
14.
14. H. F. Ma, Z. H. Qin, M. C. Xu, D. X. Shi, H. J. Gao, S. Wang, and S. T. Pantelides, Phys. Rev. B 75, 165403 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.165403
15.
15. S. C. Li, J. F. Jia, R. F. Dou, Q. K. Xue, I. G. Batyrev, and S. B. Zhang, Phys. Rev. Lett. 93, 116103 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.116103
16.
16. S. Azatyan, M. Hirai, M. Kusaka, and M. Iwami, Appl. Surf. Sci. 237, 105 (2004).
http://dx.doi.org/10.1016/j.apsusc.2004.06.089
17.
17. S. G. Azatyan, M. Iwami, and V. G. Lifshits, Surf. Sci. 589, 106 (2005).
http://dx.doi.org/10.1016/j.susc.2005.05.064
18.
18. H. Wang and Z. Q. Zou, Appl. Phys. Lett. 88, 103115 (2006).
http://dx.doi.org/10.1063/1.2184809
19.
19. J. Z. Wang, J. F. Jia, Z. H. Xiong, and Q. K. Xue, Phys. Rev. B 78, 045424 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.045424
20.
20. D. Y. Wang, L. J. Chen, W. He, Q. F. Zhan, and Z. H. Cheng, J. Phys. D 39, 347 (2006).
http://dx.doi.org/10.1088/0022-3727/39/2/016
21.
21. M. A. K. Zilani, Y. Y. Sun, H. Xu, G. W. Peng, Y. P. Feng, X. S. Wang, and A. T. S. Wee, Surf. Sci. 601, 2486 (2007).
http://dx.doi.org/10.1016/j.susc.2007.04.181
22.
22. M. A. K. Zilani, Y. Y. Sun, H. Xu, L. Liu, Y. P. Feng, X. S. Wang, and A. T. S. Wee, Phys. Rev. B 72, 193402 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.193402
23.
23. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994);
http://dx.doi.org/10.1103/PhysRevB.50.17953
23.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
24.
24. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996);
http://dx.doi.org/10.1103/PhysRevB.54.11169
24.G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
25.
25. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
26.
26.Our calculations show that the Mn atoms on the UFHUC are unfavorable energetically. For example, Mn atom at H2 site on UFHUC is ∼60 meV per atom higher compare to that on FHUC in energy.
27.
27. J. T. Wang, C. F. Chen, E. G. Wang, and Y. Kawazoe, Phys. Rev. Lett. 105, 116102 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.116102
28.
28. M. Hortamani, H. Wu, P. Kratzer, and M. Scheffler, Phys. Rev. B 74, 205305 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.205305
29.
29.At finite temperature, the hopping rate (R) can be estimated by R = R0, where R0 is the prefactor, which is about 1013 ∼ 1015, Eb is the energy barrier, kB is the Boltzmann constant, and T is the temperature. With our calculated energy barrier of 0.57, 0.93, and 1.20 eV, the hopping rates are estimated to be 104, 0.07, and 0.00 s−1 at 300 K, and 109, 2 × 105, and 3 × 102 s−1 at 500 K, respectively. Here, the prefactor of 1015 is used.
30.
30.The adsorption energy of the following next Mn atom is defined by (N + 1)*Ead(N + 1) − N*Ead(N), where Ead(N + 1) and Ead(N) are the average adsorption energy of MnN + 1 and MnN clusters, respectively.
31.
31. C. Y. Niu and J. T. Wang, Solid State Commun. 152, 127 (2012).
http://dx.doi.org/10.1016/j.ssc.2011.10.026
32.
32. A. M. P. Sena and D. R. Bowler, J. Phys.: Condens. Matter 23, 305003 (2011).
http://dx.doi.org/10.1088/0953-8984/23/30/305003
33.
33.See supplementary material at http://dx.doi.org/10.1063/1.4801924 for more detailed simulated STM images for Mn11 and Mn12. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/16/10.1063/1.4801924
Loading
/content/aip/journal/jcp/138/16/10.1063/1.4801924
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/16/10.1063/1.4801924
2013-04-24
2014-09-17

Abstract

We show by first-principles calculations two types of magnetic magic Mn clusters on the Si(111)-(7 × 7) surface. The first is a small triangular Mn7 cluster stabilized by the solid-centered Mn–Si3 bonds on the top layer, and the second is a large hexagonal Mn13 cluster favored by the confining potential wells of the faulted half unit cells on the Si(111) surface. These two structural models are distinct from that of the planar group-III clusters on Si(111) and produce simulated scanning tunneling microscopy images in reasonable agreement with recent experimental observations. These results offer key insights for understanding the complex energetic landscape on the Si(111)-(7 × 7) surface, which is critical to precisely controlled growth of Mn nanocluster arrays with specific size, magnetic moment, and good uniformity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/16/1.4801924.html;jsessionid=i1qgpcptjoj6.x-aip-live-03?itemId=/content/aip/journal/jcp/138/16/10.1063/1.4801924&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Size-selective self-assembly of magnetic Mn nanoclusters on Si(111)
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/16/10.1063/1.4801924
10.1063/1.4801924
SEARCH_EXPAND_ITEM