1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Virial coefficients and demixing in highly asymmetric binary additive hard-sphere mixtures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/16/10.1063/1.4803097
1.
1. J. L. Lebowitz and J. S. Rowlinson, J. Chem. Phys. 41, 133 (1964).
http://dx.doi.org/10.1063/1.1725611
2.
2. T. Boublík, J. Chem. Phys. 53, 471 (1970).
http://dx.doi.org/10.1063/1.1673824
3.
3. G. A. Mansoori, N. F. Carnahan, K. E. Starling, and J. T. W. Leland, J. Chem. Phys. 54, 1523 (1971).
http://dx.doi.org/10.1063/1.1675048
4.
4. T. Biben and J.-P. Hansen, Phys. Rev. Lett. 66, 2215 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.2215
5.
5. A. Santos, Phys. Rev. E 86, 040102(R) (2012).
http://dx.doi.org/10.1103/PhysRevE.86.040102
6.
6. T. Coussaert and M. Baus, Phys. Rev. Lett. 79, 1881 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1881
7.
7. T. Coussaert and M. Baus, Phys. Rev. Lett. 80, 4832 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4832
8.
8. T. Coussaert and M. Baus, J. Chem. Phys. 109, 6012 (1998).
http://dx.doi.org/10.1063/1.477227
9.
9. C. Regnaut, A. Dyan, and S. Amokrane, Mol. Phys. 99, 2055 (2001).
http://dx.doi.org/10.1080/00268970110090575
10.
10. M. Dijkstra, R. van Roij, and R. Evans, Phys. Rev. Lett. 81, 2268 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.2268
11.
11. M. Dijkstra, R. van Roij, and R. Evans, Phys. Rev. Lett. 82, 117 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.117
12.
12. M. Dijkstra, R. van Roij, and R. Evans, Phys. Rev. E 59, 5744 (1999).
http://dx.doi.org/10.1103/PhysRevE.59.5744
13.
13. A. Ayadim and S. Amokrane, Phys. Rev. E 74, 021106 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.021106
14.
14. D. J. Ashton, N. B. Wilding, R. Roth, and R. Evans, Phys. Rev. E 84, 061136 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.061136
15.
15. S. B. Yuste, A. Santos, and M. López de Haro, Europhys. Lett. 52, 158 (2000).
http://dx.doi.org/10.1209/epl/i2000-00411-9
16.
16. A. Santos and M. López de Haro, Phys. Rev. E 72, 010501(R) (2005).
http://dx.doi.org/10.1103/PhysRevE.72.010501
17.
17. T. Kihara, Rev. Mod. Phys. 27, 412 (1955).
http://dx.doi.org/10.1103/RevModPhys.27.412
18.
18. T. Kihara and K. Miyoshi, J. Stat. Phys. 13, 337 (1975).
http://dx.doi.org/10.1007/BF01012012
19.
19. F. Saija, G. Fiumara, and P. V. Giaquinta, Mol. Phys. 87, 991 (1996);
http://dx.doi.org/10.1080/00268979600100671
19.F. Saija, G. Fiumara, and P. V. Giaquinta, Mol. Phys. 92, 1089 (1997).
http://dx.doi.org/10.1080/002689797169736
20.
20. E. Enciso, N. G. Almarza, D. S. Calzas, and M. A. González, Mol. Phys. 92, 173 (1997).
http://dx.doi.org/10.1080/002689797170374
21.
21. E. Enciso, N. G. Almarza, M. A. González, and F. J. Bermejo, Phys. Rev. E 57, 4486 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.4486
22.
22. R. J. Wheatley, F. Saija, and P. V. Giaquinta, Mol. Phys. 94, 877 (1998).
http://dx.doi.org/10.1080/00268979809482383
23.
23. A. Y. Vlasov and A. J. Masters, Fluid Phase Equilib. 212, 183 (2003).
http://dx.doi.org/10.1016/S0378-3812(03)00282-6
24.
24. S. Labík and J. Kolafa (private communication).
25.
25. M. López de Haro, A. Malijevský, and S. Labík, Collect. Czech. Chem. Commun. 75, 359 (2010).
http://dx.doi.org/10.1135/cccc2009510
26.
26. A. J. Masters, J. Phys.: Condens. Matter 20, 283102 (2008).
http://dx.doi.org/10.1088/0953-8984/20/28/283102
27.
27. C. Vega, J. Chem. Phys. 108, 3074 (1998).
http://dx.doi.org/10.1063/1.475698
28.
28. M. López de Haro and C. F. Tejero, J. Chem. Phys. 121, 6918 (2004).
http://dx.doi.org/10.1063/1.1791611
29.
29. R. J. Wheatley, J. Chem. Phys. 111, 5455 (1999).
http://dx.doi.org/10.1063/1.479805
30.
30. C. Barrio, and J. R. Solana, in Theory and Simulation of Hard-Sphere Fluids and Related Systems, edited by A. Mulero, Lectures Notes in Physics Vol. 753 (Springer-Verlag, Berlin, 2008), pp. 133182.
31.
31. E. J. van Rensburg, J. Phys. A 26, 4805 (1993).
http://dx.doi.org/10.1088/0305-4470/26/19/014
32.
32. S. Labík, J. Kolafa, and A. Malijevský, Phys. Rev. E 71, 021105 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.021105
33.
33. N. Clisby and B. M. McCoy, Pramana 64, 775 (2005).
http://dx.doi.org/10.1007/BF02704582
34.
34. N. Clisby and B. M. McCoy, J. Stat. Phys. 122, 15 (2006).
http://dx.doi.org/10.1007/s10955-005-8080-0
35.
35.The formulas by Wheatley require as input the virial coefficients of a pure hard-sphere fluid. Here we have used the values reported by van Rensburg,31 Labík et al.,32 and Clisby and McCoy.33,34
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/16/10.1063/1.4803097
Loading
/content/aip/journal/jcp/138/16/10.1063/1.4803097
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/16/10.1063/1.4803097
2013-04-29
2014-10-01

Abstract

The problem of demixing in a binary fluid mixture of highly asymmetric additive hard spheres is revisited. A comparison is presented between the results derived previously using truncated virial expansions for three finite size ratios with those that one obtains with the same approach in the extreme case in which one of the components consists of point particles. Since this latter system is known not to exhibit fluid-fluid segregation, the similarity observed for the behavior of the critical constants arising in the truncated series in all instances, while not being conclusive, may cast serious doubts as to the actual existence of a demixing fluid-fluid transition in disparate-sized binary additive hard-sphere mixtures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/16/1.4803097.html;jsessionid=4mew73emkdr1v.x-aip-live-02?itemId=/content/aip/journal/jcp/138/16/10.1063/1.4803097&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Virial coefficients and demixing in highly asymmetric binary additive hard-sphere mixtures
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/16/10.1063/1.4803097
10.1063/1.4803097
SEARCH_EXPAND_ITEM