1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Nature of the anomalies in the supercooled liquid state of the mW model of water
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/17/10.1063/1.4802992
1.
1. C. A. Angell, M. Oguni, and W. J. Sichina, J. Phys. Chem. 86, 998 (1982).
http://dx.doi.org/10.1021/j100395a032
2.
2. D. E. Hare and C. M. Sorensen, J. Chem. Phys. 87, 4840 (1987).
http://dx.doi.org/10.1063/1.453710
3.
3. H. Kanno and C. A. Angell, J. Chem. Phys. 73, 1940 (1980).
http://dx.doi.org/10.1063/1.440331
4.
4. H. Kanno and C. A. Angell, J. Chem. Phys. 70, 4008 (1979).
http://dx.doi.org/10.1063/1.438021
5.
5. P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Nature (London) 360, 324 (1992).
http://dx.doi.org/10.1038/360324a0
6.
6. O. Mishima and H. E. Stanley, Nature (London) 396, 329 (1998).
http://dx.doi.org/10.1038/24540
7.
7. H. E. Stanley, S. V. Buldyrev, M. Canpolat, O. Mishima, M. R. Sadr-Lahijany, A. Scala, and F. W. Starr, Phys. Chem. Chem. Phys. 2, 1551 (2000).
http://dx.doi.org/10.1039/b000058m
8.
8. P. G. Debenedetti, J. Phys.: Condens. Matter 15, R1669 (2003).
http://dx.doi.org/10.1088/0953-8984/15/45/R01
9.
9. K. Stokely, M. G. Mazza, H. E. Stanley, and G. Franzese, Proc. Natl. Acad. Sci. U.S.A. 107, 1301 (2010).
http://dx.doi.org/10.1073/pnas.0912756107
10.
10. O. Mishima, Proc. Jpn. Acad., Ser. B: Phys. Biol. Sci. 86, 165 (2010).
http://dx.doi.org/10.2183/pjab.86.165
11.
11. O. Mishima and H. E. Stanley, Nature (London) 392, 164 (1998).
http://dx.doi.org/10.1038/32386
12.
12. O. Mishima, Phys. Rev. Lett. 85, 334 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.334
13.
13. O. Mishima, J. Phys. Chem. B 115, 14064 (2011).
http://dx.doi.org/10.1021/jp203669p
14.
14. K. Murata and H. Tanaka, Nature Mater. 11, 436 (2012).
http://dx.doi.org/10.1038/nmat3271
15.
15. V. Holten and M. A. Anisimov, Sci. Rep. 2, 713 (2012).
http://dx.doi.org/10.1038/srep00713
16.
16. P. G. Debenedetti, Metastable Liquids (Princeton University Press, Princeton, NJ, 1996).
17.
17. H. Kanno, R. J. Speedy, and C. A. Angell, Science 189, 880 (1975).
http://dx.doi.org/10.1126/science.189.4206.880
18.
18. V. Molinero and E. B. Moore, J. Phys. Chem. B 113, 4008 (2009).
http://dx.doi.org/10.1021/jp805227c
19.
19. E. B. Moore and V. Molinero, Nature (London) 479, 506 (2011).
http://dx.doi.org/10.1038/nature10586
20.
20. D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011).
http://dx.doi.org/10.1063/1.3643333
21.
21. C. E. Bertrand and M. A. Anisimov, J. Phys. Chem. B 115, 14099 (2011).
http://dx.doi.org/10.1021/jp204011z
22.
22. D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Oxford University Press, New York, 1969), pp. 256267.
23.
23. E. B. Moore and V. Molinero, J. Chem. Phys. 130, 244505 (2009).
http://dx.doi.org/10.1063/1.3158470
24.
24. Hydrothermal Properties of Materials: Experimental Data on Aqueous Phase Equilibria and Solution Properties at Elevated Temperatures and Pressures, edited by V. Valyashko (Wiley, Chichester, UK, 2008).
25.
25. P. F. McMillan, J. Mater. Chem. 14, 1506 (2004).
http://dx.doi.org/10.1039/b401308p
26.
26. M. C. Wilding, M. Wilson, and P. F. McMillan, Chem. Soc. Rev. 35, 964 (2006).
http://dx.doi.org/10.1039/b517775h
27.
27. M. Vedamuthu, S. Singh, and G. W. Robinson, J. Phys. Chem. 98, 2222 (1994).
http://dx.doi.org/10.1021/j100060a002
28.
28. H. Tanaka, Eur. Phys. J. E 35, 113 (2012).
http://dx.doi.org/10.1140/epje/i2012-12113-y
29.
29. E. G. Ponyatovsky, V. V. Sinitsyn, and T. A. Pozdnyakova, J. Chem. Phys. 109, 2413 (1998).
http://dx.doi.org/10.1063/1.476809
30.
30. C. T. Moynihan, Mater. Res. Soc. Symp. Proc. 455, 411 (1996).
http://dx.doi.org/10.1557/PROC-455-411
31.
31. M. J. Cuthbertson and P. H. Poole, Phys. Rev. Lett. 106, 115706 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.115706
32.
32. I. Prigogine and R. Defay, Chemical Thermodynamics (Longmans, Green & Co., London, 1954).
33.
33. H. E. Stanley and J. Teixeira, J. Chem. Phys. 73, 3404 (1980).
http://dx.doi.org/10.1063/1.440538
34.
34. P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953).
35.
35. M. A. Floriano, Y. P. Handa, D. D. Klug, and E. Whalley, J. Chem. Phys. 91, 7187 (1989).
http://dx.doi.org/10.1063/1.457285
36.
36. R. S. Smith, J. Matthiesen, J. Knox, and B. D. Kay, J. Phys. Chem. A 115, 5908 (2011).
http://dx.doi.org/10.1021/jp110297q
37.
37. S. A. Brazovskiĭ, Sov. Phys. JETP 41, 85 (1975).
38.
38. S. A. Brazovskiĭ, I. E. Dzyaloshinskiĭ, and A. R. Muratov, Sov. Phys. JETP 66, 625 (1987).
39.
39. E. I. Kats, V. V. Lebedev, and A. R. Muratov, Phys. Rep. 228, 1 (1993).
http://dx.doi.org/10.1016/0370-1573(93)90119-X
40.
40.For values of in the given range, the sum of squared deviations of the model from the data varies by 5% or less.
41.
41. D. T. Limmer and D. Chandler, J. Chem. Phys. 137, 044509 (2012).
http://dx.doi.org/10.1063/1.4737907
42.
42. R. J. Speedy and C. A. Angell, J. Chem. Phys. 65, 851 (1976).
http://dx.doi.org/10.1063/1.433153
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/17/10.1063/1.4802992
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Density ρ, isobaric heat capacity , isothermal compressibility κ, and thermal expansivity α computed from the mW model (points) compared with the results (curves) of the two-state approach for an athermal solution [Eq. (13) ]. The isobar pressures are given in the density diagram; pressures and corresponding isobar colors are the same in the four panels.

Image of FIG. 2.

Click to view

FIG. 2.

Fraction of molecules in the low-density state. Solid curves: fraction for the (a) two-state equation of state, Eq. (13) ; (b) two-state equation accounting for hexamer clustering, Eq. (16) with = 6. Dashed curves: fraction obtained from simulations of mW water, calculated from the fraction of four-coordinated molecules as , to account for fractions and of four-coordinated molecules in the low- and high-temperature liquid, respectively. The inflection points on the curves are marked with circles (two-state equation) and squares (mW model). The data were collected by linearly quenching the temperature of the simulations at a rate of 10 K/ns. The data below the inflection point do not correspond to equilibrium states.

Image of FIG. 3.

Click to view

FIG. 3.

Pressure–temperature diagram. Circles: location of the computed property data of the mW model. Solid line: line at which ln  = 0 and the low-density fraction = 1/2 for the two-state equation. Squares: location of inflection points of the low-density fraction for the mW model (see Fig. 2 ). Dotted line: stability-limit temperature from the fit of the weak crystallization model to the mW data, Eq. (26) . The dashed curve is a fit to the melting temperature of mW ice (uncertainty about ±3 K), obtained from free energy calculations as described in Ref. .

Image of FIG. 4.

Click to view

FIG. 4.

Enthalpy Δ (a) and entropy Δ (b) of liquid mW water with respect to ice at 0.1 MPa (black curves, from Moore and Molinero ) and their fits (dashed red curves) according to Eqs. (18) and (19) , respectively. Both Δ and Δ are computed at a cooling rate of 10 K/ns, which prevents crystallization, so that the values below 200 K do not correspond to an equilibrium state. The circle signals K. These results support the modeling of mW water as an athermal mixture of two states.

Image of FIG. 5.

Click to view

FIG. 5.

Heat capacity of mW water in equilibrium (circles) and on hyperquenching at 10 K/ns (black curve, computations by Moore and Molinero ). The values below 200 K do not correspond to an equilibrium state. The dashed curve is the prediction of the two-state equation with hexamer clusters.

Image of FIG. 6.

Click to view

FIG. 6.

Fluctuation-renormalized distance to the stability-limit temperature Δ, given by Eq. (21) , as a function of the mean-field distance to the stability limit Δ, for two values of β (solid curves). The dashed line corresponds to Δ = Δ and is shown as a reference.

Image of FIG. 7.

Click to view

FIG. 7.

Density ρ, isobaric heat capacity , isothermal compressibility κ, and thermal expansivity α computed from the mW model (points) compared with the fit to power laws given by weak crystallization theory (curves). The isobar pressures are given in the density diagram; pressures and corresponding isobar colors are the same in the four panels.

Image of FIG. 8.

Click to view

FIG. 8.

Fluctuations of the crystallization order parameter from weak crystallization theory (i.e., short-wavelength density fluctuations) in arbitrary units as a function of temperature, fit with Eq. (28) (curve).

Tables

Generic image for table

Click to view

Table I.

Parameters for the two-state equation of state, Eq. (13) .

Generic image for table

Click to view

Table II.

Parameters for the two-state equation, Eq. (16) , with = 6.

Generic image for table

Click to view

Table III.

Parameters for the fit of weak crystallization theory, Eq. (22) .

Loading

Article metrics loading...

/content/aip/journal/jcp/138/17/10.1063/1.4802992
2013-05-01
2014-04-24

Abstract

The thermodynamic properties of the supercooled liquid state of the mW model of water show anomalous behavior. Like in real water, the heat capacity and compressibility sharply increase upon supercooling. One of the possible explanations of these anomalies, the existence of a second (liquid–liquid) critical point, is not supported by simulations for this model. In this work, we reproduce the anomalies of the mW model with two thermodynamic scenarios: one based on a non-ideal “mixture” with two different types of local order of the water molecules, and one based on weak crystallization theory. We show that both descriptions accurately reproduce the model's basic thermodynamic properties. However, the coupling constant required for the power laws implied by weak crystallization theory is too large relative to the regular backgrounds, contradicting assumptions of weak crystallization theory. Fluctuation corrections outside the scope of this work would be necessary to fit the forms predicted by weak crystallization theory. For the two-state approach, the direct computation of the low-density fraction of molecules in the mW model is in agreement with the prediction of the phenomenological equation of state. The non-ideality of the “mixture” of the two states never becomes strong enough to cause liquid–liquid phase separation, also in agreement with simulation results.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/17/1.4802992.html;jsessionid=2p2k55c34nnmt.x-aip-live-06?itemId=/content/aip/journal/jcp/138/17/10.1063/1.4802992&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nature of the anomalies in the supercooled liquid state of the mW model of water
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/17/10.1063/1.4802992
10.1063/1.4802992
SEARCH_EXPAND_ITEM