1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Ag-Cu catalysts for ethylene epoxidation: Selectivity and activity descriptors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/18/10.1063/1.4803157
1.
1. B. K. Hodnett, Heterogeneous Catalytic Oxidation: Fundamental and Technological Aspects of the Selective and Total Oxidation of Organic Compounds (John Wiley, New York, 2000).
2.
2.Global CCS Institute, CCS Roadmap for Industry, see http://www.globalccsinstitute.com.
3.
3. K. Weissermel and H. Arpe, Industrial Organic Chemistry (Wiley-VCH, Weinheim, 1993).
5.
5. C. T. Campbell and M. T. Paffett, Surf. Sci. 139, 396 (1984).
http://dx.doi.org/10.1016/0039-6028(84)90059-1
6.
6. C. T. Campbell, J. Catal. 94, 436 (1985).
http://dx.doi.org/10.1016/0021-9517(85)90208-8
7.
7. R. Grant and R. Lambert, J. Catal. 92, 364 (1985).
http://dx.doi.org/10.1016/0021-9517(85)90270-2
8.
8. R. V. Santen and C. de Groot, J. Catal. 98, 530 (1986).
http://dx.doi.org/10.1016/0021-9517(86)90341-6
9.
9. P. J. van den Hoek, E. J. Baerends, and R. van Santen, J. Phys. Chem. 93, 6469 (1989).
http://dx.doi.org/10.1021/j100354a038
10.
10. M. Rocca, L. Savio, L. Vattuone, U. Burghaus, V. Palomba, N. Novelli, F. Buatier de Mongeot, U. Valbusa, R. Gunnella, G. Comelli, A. Baraldi, S. Lizzit, and G. Paolucci, Phys. Rev. B 61, 213 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.213
11.
11. L. Savio, L. Vattuone, M. Rocca, F. B. de Mongeot, G. Comelli, A. Baraldi, S. Lizzit, and G. Paolucci, Surf. Sci. 506, 213 (2002).
http://dx.doi.org/10.1016/S0039-6028(02)01434-6
12.
12. V. I. Bukhtiyarov, M. Hävecker, V. V. Kaichev, A. Knop-Gericke, R. W. Mayer, and R. Schlögl, Phys. Rev. B 67, 235422 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.235422
13.
13. T. C. R. Rocha, A. Oestereich, D. V. Demidov, M. Havecker, S. Zafeiratos, G. Weinberg, V. I. Bukhtiyarov, A. Knop-Gericke, and R. Schlogl, Phys. Chem. Chem. Phys. 14, 4554 (2012).
http://dx.doi.org/10.1039/c2cp22472k
14.
14. M. Ozbek, I. Onal, and R. van Saten, J. Catal. 284, 230 (2011).
http://dx.doi.org/10.1016/j.jcat.2011.08.004
15.
15. M. O. Ozbek, I. Onal, and R. A. van Santen, ChemCatChem 3, 150 (2011).
http://dx.doi.org/10.1002/cctc.201000249
16.
16. J. Schnadt, J. Knudsen, X. L. Hu, A. Michaelides, R. T. Vang, K. Reuter, Z. Li, E. Lægsgaard, M. Scheffler, and F. Besenbacher, Phys. Rev. B 80, 075424 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.075424
17.
17. D. S. Su, T. Jacob, T. Hansen, D. Wang, R. Schlgl, B. Freitag, and S. Kujawa, Angew. Chem., Int. Ed. 47, 5005 (2008), ISSN 1521–3773.
http://dx.doi.org/10.1002/anie.200800406
18.
18. W.-X. Li, C. Stampfl, and M. Scheffler, Phys. Rev. B 65, 075407 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.075407
19.
19. W.-X. Li, C. Stampfl, and M. Scheffler, Phys. Rev. B 67, 045408 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.045408
20.
20. S. Linic and M. A. Barteau, J. Am. Chem. Soc. 124, 310 (2002).
http://dx.doi.org/10.1021/ja0118136
21.
21. S. Linic and M. A. Barteau, J. Am. Chem. Soc. 125, 4034 (2003).
http://dx.doi.org/10.1021/ja029076g
22.
22. D. Torres, N. Lopez, F. Illas, and R. M. Lambert, J. Am. Chem. Soc. 127, 10774 (2005).
http://dx.doi.org/10.1021/ja043227t
23.
23. M. Ozbek, I. Onal, and R. Santen, Top. Catal. 55, 710 (2012).
http://dx.doi.org/10.1007/s11244-012-9870-7
24.
24. S. Linic, J. T. Jankowiak, and M. A. Barteau, J. Catal. 224, 489 (2004).
http://dx.doi.org/10.1016/j.jcat.2004.03.007
25.
25. S. Piccinin, S. Zafeiratos, C. Stampfl, T. Hansen, M. Havecker, D. Teschner, V. Bukhtiyarov, F. Girgsdies, A. Knop-Gericke, R. Schlöegl, and M. Scheffler, Phys. Rev. Lett. 104, 035503 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.035503
26.
26. S. Piccinin, C. Stampfl, and M. Scheffler, Phys. Rev. B 77, 075426 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.075426
27.
27. S. Piccinin, C. Stampfl, and M. Scheffler, Surf. Sci. 603, 1467 (2009).
http://dx.doi.org/10.1016/j.susc.2008.10.050
28.
28. S. Piccinin, N. L. Nguyen, C. Stampfl, and M. Scheffler, J. Mater. Chem. 20, 10521 (2010).
http://dx.doi.org/10.1039/c0jm01916j
29.
29. N. L. Nguyen, S. Piccinin, and S. de Gironcoli, J. Chem. Phys. C 115, 10073 (2011).
http://dx.doi.org/10.1021/jp200489e
30.
30. A. Kokalj, P. Gava, S. de Gironcoli, and S. Baroni, J. Catal. 254, 304 (2008).
http://dx.doi.org/10.1016/j.jcat.2008.01.008
31.
31. J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
32.
32. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7892
33.
33.The ultrasolft pseudopotentials for Ag, Cu, O, C, and H were taken from QUANTUM-ESPRESSO pseudopotential download page, see http://www.quantum-espresso.org (files: Ag.pbe-d-rrkjus.UPF, Cu.pbe-d-rrkjus.UPF, O.pbe-rrkjus.UPF, C.pbe-rrkjus.UPF, and H.pbe-rrkjus.UPF).
34.
34. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
35.
35. N. Marzari, D. Vanderbilt, A. D. Vita, and M. C. Payne, Phys. Rev. Lett. 82, 3296 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3296
36.
36. G. Henkelman, B. P. Uberuaga, and H. Johnson, J. Chem. Phys. 113, 9901 (2000).
http://dx.doi.org/10.1063/1.1329672
37.
37. P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
38.
38. C. Stampfl, Catal. Today 105, 17 (2005).
http://dx.doi.org/10.1016/j.cattod.2005.04.015
39.
39. K. Reuter and M. Scheffler, Phys. Rev. B 65, 035406 (2001).
http://dx.doi.org/10.1103/PhysRevB.65.035406
40.
40. S. Zafeiratos, S. Piccinin, and D. Teschner, Catal. Sci. Technol. 2, 1787 (2012).
http://dx.doi.org/10.1039/c2cy00487a
41.
41. J. Kim, J. Rodriguez, J. Hanson, A. Frenkel, and P. Lee, J. Am. Chem. Soc. 125, 10684 (2003).
http://dx.doi.org/10.1021/ja0301673
42.
42. Y. Xu, J. Greeley, and M. Marvrikakis, J. Am. Chem. Soc. 127, 12823 (2005).
http://dx.doi.org/10.1021/ja043727m
43.
43. J. Greeley and M. Mavrikakis, J. Phys. Chem. C 111, 7992 (2007).
http://dx.doi.org/10.1021/jp070490i
44.
44. C. Backx, J. Moolhuysen, P. Geenen, and R. van Santen, J. Catal. 72, 364 (1981).
http://dx.doi.org/10.1016/0021-9517(81)90019-1
45.
45. M. Atkins, J. Couves, M. Hague, B. Sakakini, and K. Waugh, J. Catal. 235, 103 (2005).
http://dx.doi.org/10.1016/j.jcat.2005.07.019
46.
46. M. Dean, A. McKee, and M. Bowker, Surf. Sci. 211, 1061 (1989).
http://dx.doi.org/10.1016/0039-6028(89)90875-3
47.
47. A. Kleyn, D. Butler, and A. Raukema, Surf. Sci. 363, 29 (1996).
http://dx.doi.org/10.1016/0039-6028(96)00089-1
48.
48. X. Bao, M. Muhler, T. Schedel-Niedrig, and R. Schlögl, Phys. Rev. B 54, 2249 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.2249
49.
49. A. Y. Lozovoi, A. Alavi, and M. W. Finnis, Phys. Rev. Lett. 85, 610 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.610
50.
50. K. Reuter, M. V. Ganduglia-Pirovano, C. Stampfl, and M. Scheffler, Phys. Rev. B 65, 165403 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165403
51.
51. M. Ganduglia-Pirovano, K. Reuter, and M. Scheffler, Phys. Rev. B 65, 245426 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.245426
52.
52. M.-L. Bocquet, P. Sautet, J. Cerda, C. I. Carlisle, M. J. Webb, and D. A. King, J. Am. Chem. Soc. 125, 3119 (2003).
http://dx.doi.org/10.1021/ja027634l
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/18/10.1063/1.4803157
Loading
/content/aip/journal/jcp/138/18/10.1063/1.4803157
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/18/10.1063/1.4803157
2013-05-10
2014-08-28

Abstract

Ag-Cu alloy catalysts for ethylene epoxidation have been shown to yield higher selectivity towards ethylene oxide compared to pure Ag, the unique catalyst employed in the industrial process. Previous studies showed that under oxidizing conditions Cu forms oxide layers on top of Ag. Using first-principles atomistic simulations based on density functional theory, we investigate the reaction mechanism on the thin oxide layer structures and establish the reasons for the improved selectivity. We extend the range of applicability of the selectivity descriptor proposed by Kokalj et al. [J. Catal.254, 304 (Year: 2008)]10.1016/j.jcat.2008.01.008, based on binding energies of reactants, intermediates, and products, by refitting its parameters so as to include thin oxide layer catalysts. We show that the selectivity is mainly controlled by the relative strength of the metal-carbon vs. metal-oxygen bonds, while the height of the reaction barriers mostly depend on the binding energy of the common oxametallacycle intermediate.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/18/1.4803157.html;jsessionid=2crki5ar5rlqd.x-aip-live-02?itemId=/content/aip/journal/jcp/138/18/10.1063/1.4803157&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ag-Cu catalysts for ethylene epoxidation: Selectivity and activity descriptors
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/18/10.1063/1.4803157
10.1063/1.4803157
SEARCH_EXPAND_ITEM