Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Izvekov and G. Voth, J. Chem. Phys. 115, 71967206 (2001).
2. A. Michaelides and P. Hu, J. Am. Chem. Soc. 123, 42354242 (2001).
3. S. Meng, L. Xu, E. Wang, and S. Gao, Phys. Rev. Lett. 89, 176104 (2002).
4. A. Michaelides, V. Ranea, P. De Andres, and D. King, Phys. Rev. Lett. 90, 216102 (2003).
5. A. Michaelides, A. Alavi, and D. King, Phys. Rev. B 69, 113404 (2004).
6. S. Meng, Surf. Sci. 575, 300306 (2005).
7. Y. Cao and Z. Chen, Surf. Sci. 600, 45724583 (2006).
8. A. Michaelides and K. Morgenstern, Nature Mater. 6, 597601 (2007).
9. A. Michaelides, Faraday Discuss. 136, 287297 (2007).
10. S. Meng, E. Kaxiras, and Z. Zhang, J. Chem. Phys. 127, 244710 (2007).
11. Y. Cao and Z. Chen, Phys. Chem. Chem. Phys. 9, 739746 (2007).
12. J. Siepmann and M. Sprik, J. Chem. Phys. 102, 511524 (1995).
13. A. Willard, S. Reed, P. Madden, and D. Chandler, Faraday Discuss. 141, 423441 (2009).
14. D. T. Limmer, A. P. Willard, P. Madden, and D. Chandler, Proc. Natl. Acad. Sci. U.S.A. 110, 42004205 (2013).
15. M. Ediger, C. Angell, and S. Nagel, J. Phys. Chem. 100, 1320013212 (1996).
16. D. Chandler and J. Garrahan, Annu. Rev. Phys. Chem. 61, 191217 (2010).
17. A. Keys, L. Hedges, J. Garrahan, S. Glotzer, and D. Chandler, Phys. Rev. X 1, 021013 (2011).
18. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 62696271 (1987).
19. A. Hodgson and S. Haq, Surf. Sci. Rep. 64, 381451 (2009).
20. P. Thiel and T. Madey, Surf. Sci. Rep. 7, 211385 (1987).
21. P. Feibelman, G. Kimmel, R. Smith, N. Petrik, T. Zubkov, and B. Kay, J. Chem. Phys. 134, 204702 (2011).
22. S. Plimpton, J. Comput. Phys. 117, 119 (1995).
23. Stable hydrogen bond configurations can be generated by tiling the surface with a four-membered unit cell with no net dipole. By lattice symmetry four such tilings exist as shown on the left-hand side of Fig. 2(a). If tiling begins from the bottom left-hand side of the electrode and works up and to the right-hand side each water molecule can be uniquely assigned to one of the four patterns based on the relative orientation of the molecular dipole projected onto the plane parallel to the electrode.
24. Here we use the standard geometric criteria for identifying hydrogen bonds. That is two molecules are considered hydrogen bonded if the O–O distance is less than and the O–H⋅⋅⋅O angle is less than 35°.
25. G. Grimmett and D. Stirzaker, Probability and Random Processes (Clarendon Press, Oxford, 1992), Vol. 2.
26. Y. J. Jung, J. P. Garrahan, and D. Chandler, J. Chem. Phys. 123, 084509 (2005).
27. L. Hedges, L. Maibaum, D. Chandler, and J. Garrahan, J. Chem. Phys. 127, 211101 (2007).
28. L. Hedges, R. Jack, J. Garrahan, and D. Chandler, Science 323, 13091313 (2009).
29. R. Jinnouchi and A. Anderson, Phys. Rev. B 77, 245417 (2008).
30. V. Fatemi, M. Kamenetska, J. Neaton, and L. Venkataraman, Nano Lett. 11, 1988 (2011).

Data & Media loading...


Article metrics loading...



In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this ad-layer dynamic heterogeneity responds asymmetrically to applied voltage.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd