1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Kinetic theory of amyloid fibril templating
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/18/10.1063/1.4803658
1.
1. I. Cherny and E. Gazit, Angew. Chem. 47, 4062 (2008).
http://dx.doi.org/10.1002/anie.200703133
2.
2. G. G. Tartaglia, A. P. Pawar, S. Campioni, C. Dobson, F. Chiti, and M. Vendruscolo, J. Mol. Biol. 380, 425 (2008).
http://dx.doi.org/10.1016/j.jmb.2008.05.013
3.
3. D. J. Selkoe, Nature (London) 426, 900 (2003).
http://dx.doi.org/10.1038/nature02264
4.
4. M. M. Pallitto and R. M. Murphy, Biophys. J. 81, 1805 (2001).
http://dx.doi.org/10.1016/S0006-3495(01)75831-6
5.
5. D. Hall, N. Hirota, and C. Dobson, J. Mol. Biol. 351, 195 (2005).
http://dx.doi.org/10.1016/j.jmb.2005.05.013
6.
6. C.-C. Lee, A. Nayak, A. Sethuraman, G. Belfort, and G. J. McRae, Biophys. J. 92, 3448 (2007).
http://dx.doi.org/10.1529/biophysj.106.098608
7.
7. E. T. Powers and D. L. Powers, Biophys. J. 94, 379 (2008).
http://dx.doi.org/10.1529/biophysj.107.117168
8.
8. T. Knowles, C. A. Waudby, G. L. Devlin, S. I. A. Cohen, A. Aguzzi, M. Vendruscolo, E. M. Terentjev, M. E. Welland, and C. M. Dobson, Science 326, 1533 (2009).
http://dx.doi.org/10.1126/science.1178250
9.
9. D. Kashchiev and S. Auer, J. Chem. Phys. 132, 215101 (2010).
http://dx.doi.org/10.1063/1.3447891
10.
10. J. Hardy and D. J. Selkoe, Science (N.Y.) 297, 353 (2002).
http://dx.doi.org/10.1126/science.1072994
11.
11. S. Auer, F. Meersman, C. Dobson, and M. Vendruscolo, PLOS Comput. Biol. 4, e1000222 (2008).
http://dx.doi.org/10.1371/journal.pcbi.1000222
12.
12. H. D. Nguyen and C. K. Hall, J. Am. Chem. Soc. 128, 1890 (2006).
http://dx.doi.org/10.1021/ja0539140
13.
13. B. Urbanc, L. Cruz, S. Yun, S. V. Buldyrev, G. Bitan, D. B. Teplow, and H. E. Stanley, Proc. Natl. Acad. Sci. U.S.A. 101, 17345 (2004).
http://dx.doi.org/10.1073/pnas.0408153101
14.
14. C. Wu and J.-E. Shea, Curr. Opin. Struct. Biol. 21, 209 (2011).
http://dx.doi.org/10.1016/j.sbi.2011.02.002
15.
15. T. R. Serio, A. G. Cashikar, A. S. Kowal, G. J. Sawicki, J. J. Moslehi, L. Serpell, M. F. Arnsdorf, and S. L. Lindquist, Science 289, 1317 (2000).
http://dx.doi.org/10.1126/science.289.5483.1317
16.
16. S. R. Collins, A. Douglass, R. D. Vale, and J. S. Weissman, PLOS Biol. 2, e321 (2004).
http://dx.doi.org/10.1371/journal.pbio.0020321
17.
17. S. E. Hill, J. Robinson, G. Matthews, and M. Muschol, Biophys. J. 96, 3781 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.01.044
18.
18. S. E. Hill, T. Miti, T. Richmond, and M. Muschol, PLoS ONE 6, e18171 (2011).
http://dx.doi.org/10.1371/journal.pone.0018171
19.
19. P. Seubert, C. Vigo-Pelfrey, F. Esch, M. Lee, H. Dovey, D. Davis, S. Sinha, M. Schlossmacher, J. Whaley, and C. Swindlehurst, Nature (London) 359, 325 (1992).
http://dx.doi.org/10.1038/359325a0
20.
20. P. Sengupta, K. Garai, B. Sahoo, Y. Shi, D. J. E. Callaway, and S. Maiti, Biochemistry 42, 10506 (2003).
http://dx.doi.org/10.1021/bi0341410
21.
21. J. D. Schmit, K. Ghosh, and K. A. Dill, Biophys. J. 100, 450 (2011).
http://dx.doi.org/10.1016/j.bpj.2010.11.041
22.
22. T. Lührs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Döbeli, D. Schubert, and R. Riek, Proc. Natl. Acad. Sci. U.S.A. 102, 17342 (2005).
http://dx.doi.org/10.1073/pnas.0506723102
23.
23. C. Wasmer, A. Lange, H. Van Melckebeke, A. B. Siemer, R. Riek, and B. H. Meier, Science 319, 1523 (2008).
http://dx.doi.org/10.1126/science.1151839
24.
24. R. Nelson, M. R. Sawaya, M. Balbirnie, A. O. Madsen, C. Riekel, R. Grothe, and D. Eisenberg, Nature (London) 435, 773 (2005).
http://dx.doi.org/10.1038/nature03680
25.
25. S. Whitelam, R. Schulman, and L. Hedges, Phys. Rev. Lett. 109, 265506 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.265506
26.
26. T. Knowles, W. Shu, G. L. Devlin, S. Meehan, S. Auer, C. Dobson, and M. E. Welland, Proc. Natl. Acad. Sci. U.S.A. 104, 10016 (2007).
http://dx.doi.org/10.1073/pnas.0610659104
27.
27. T. Ban, M. Hoshino, S. Takahashi, D. Hamada, K. Hasegawa, H. Naiki, and Y. Goto, J. Mol. Biol. 344, 757 (2004).
http://dx.doi.org/10.1016/j.jmb.2004.09.078
28.
28. J. L. Jiménez, E. J. Nettleton, M. Bouchard, C. V. Robinson, C. Dobson, and H. R. Saibil, Proc. Natl. Acad. Sci. U.S.A. 99, 9196 (2002).
http://dx.doi.org/10.1073/pnas.142459399
29.
29. A. T. Petkova, Y. Ishii, J. J. Balbach, O. N. Antzutkin, R. D. Leapman, F. Delaglio, and R. Tycko, Proc. Natl. Acad. Sci. U.S.A. 99, 16742 (2002).
http://dx.doi.org/10.1073/pnas.262663499
30.
30. C. F. Lee, L. Jean, and D. J. Vaux, Phys. Rev. E 80, 041906 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.041906
31.
31. S. Redner, A Guide to First-Passage Processes (Cambridge University Press, 2007), p. 328.
32.
32. A. K. Buell, A. Dhulesia, D. A. White, T. Knowles, C. M. Dobson, and M. E. Welland, Angew. Chem. 51, 5247 (2012).
http://dx.doi.org/10.1002/anie.201108040
33.
33. V. Muñoz, P. A. Thompson, J. Hofrichter, and W. A. Eaton, Nature (London) 390, 196 (1997).
http://dx.doi.org/10.1038/36626
34.
34. A. K. Buell, J. R. Blundell, C. Dobson, M. E. Welland, E. M. Terentjev, and T. Knowles, Phys. Rev. Lett. 104, 228101 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.228101
35.
35. W. Hwang, S. Zhang, R. D. Kamm, and M. Karplus, Proc. Natl. Acad. Sci. U.S.A. 101, 12916 (2004).
http://dx.doi.org/10.1073/pnas.0402634101
36.
36. D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
http://dx.doi.org/10.1021/j100540a008
37.
37. J. E. Kohn, I. S. Millett, J. Jacob, B. Zagrovic, T. M. Dillon, N. Cingel, R. S. Dothager, S. Seifert, P. Thiyagarajan, T. R. Sosnick, M. Z. Hasan, V. S. Pande, I. Ruczinski, S. Doniach, and K. W. Plaxco, Proc. Natl. Acad. Sci. U.S.A. 101, 12491 (2004).
http://dx.doi.org/10.1073/pnas.0403643101
38.
38. A. J. Baldwin, T. Knowles, G. G. Tartaglia, A. W. Fitzpatrick, G. L. Devlin, S. L. Shammas, C. A. Waudby, M. F. Mossuto, S. Meehan, S. L. Gras, J. Christodoulou, S. J. Anthony-Cahill, P. D. Barker, M. Vendruscolo, and C. Dobson, J. Am. Chem. Soc. 133, 14160 (2011).
http://dx.doi.org/10.1021/ja2017703
39.
39. P. D. Ross and M. V. Rekharsky, Biophys. J. 71, 2144 (1996).
http://dx.doi.org/10.1016/S0006-3495(96)79415-8
40.
40. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, International Series of Monographs on Physics (Oxford University Press, USA, 1988), p. 408.
41.
41. R. Carrotta, M. Manno, D. Bulone, V. Martorana, and P. L. San Biagio, J. Biol. Chem. 280, 30001 (2005).
http://dx.doi.org/10.1074/jbc.M500052200
42.
42. K. Ghosh and K. A. Dill, Proc. Natl. Acad. Sci. U.S.A. 106, 10649 (2009).
http://dx.doi.org/10.1073/pnas.0903995106
43.
43. S. S. L. Shammas, T. Knowles, A. J. Baldwin, C. C. E. Macphee, M. M. E. Welland, C. Dobson, G. L. Devlin, E. Cait, and L. Glyn, Biophys. J. 100, 2783 (2011).
http://dx.doi.org/10.1016/j.bpj.2011.04.039
43.Using Eq. (1) of Ref. 38 the midpoint of the melting curve corresponds to ΔG = −23 kJ/mol, so mH = ( − 23 + 56)(kJ/mol)/3.75M/Nβ.
44.
44. H. Ramshini, C. Parrini, A. Relini, M. Zampagni, B. Mannini, A. Pesce, A. A. Saboury, M. Nemat-Gorgani, and F. Chiti, PLoS ONE 6, e16075 (2011).
http://dx.doi.org/10.1371/journal.pone.0016075
45.
45. N. L. Fawzi, Y. Okabe, E.-H. Yap, and T. Head-Gordon, J. Mol. Biol. 365, 535 (2007).
http://dx.doi.org/10.1016/j.jmb.2006.10.011
46.
46. W. P. Esler, E. R. Stimson, J. M. Jennings, H. V. Vinters, J. R. Ghilardi, J. P. Lee, P. W. Mantyh, and J. E. Maggio, Biochemistry 39, 6288 (2000).
http://dx.doi.org/10.1021/bi992933h
47.
47. G. Reddy, J. E. Straub, and D. Thirumalai, Proc. Natl. Acad. Sci. U.S.A. 106, 11948 (2009).
http://dx.doi.org/10.1073/pnas.0902473106
48.
48. M. R. Sawaya, S. Sambashivan, R. Nelson, M. I. Ivanova, S. A. Sievers, M. I. Apostol, M. J. Thompson, M. Balbirnie, J. J. W. Wiltzius, H. T. McFarlane, A. O. Madsen, C. Riekel, and D. Eisenberg, Nature (London) 447, 453 (2007).
http://dx.doi.org/10.1038/nature05695
49.
49. N. G. Sgourakis, Y. Yan, S. A. McCallum, C. Wang, and A. E. Garcia, J. Mol. Biol. 368, 1448 (2007).
http://dx.doi.org/10.1016/j.jmb.2007.02.093
50.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/18/10.1063/1.4803658
Loading
/content/aip/journal/jcp/138/18/10.1063/1.4803658
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/18/10.1063/1.4803658
2013-05-14
2014-08-29

Abstract

The growth of amyloid fibrils requires a disordered or partially unfolded protein to bind to the fibril and adapt the same conformation and alignment established by the fibril template. Since the H-bonds stabilizing the fibril are interchangeable, it is inevitable that H-bonds form between incorrect pairs of amino acids which are either incorporated into the fibril as defects or must be broken before the correct alignment can be found. This process is modeled by mapping the formation and breakage of H-bonds to a one-dimensional random walk. The resulting microscopic model of fibril growth is governed by two timescales: the diffusion time of the monomeric proteins, and the time required for incorrectly bound proteins to unbind from the fibril. The theory predicts that the Arrhenius behavior observed in experiments is due to off-pathway states rather than an on-pathway transition state. The predicted growth rates are in qualitative agreement with experiments on insulin fibril growth rates as a function of protein concentration, denaturant concentration, and temperature. These results suggest a templating mechanism where steric clashes due to a single mis-aligned molecule prevent the binding of additional molecules.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/18/1.4803658.html;jsessionid=hdii9nm3o1rw.x-aip-live-06?itemId=/content/aip/journal/jcp/138/18/10.1063/1.4803658&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Kinetic theory of amyloid fibril templating
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/18/10.1063/1.4803658
10.1063/1.4803658
SEARCH_EXPAND_ITEM