Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. I. Cherny and E. Gazit, Angew. Chem. 47, 4062 (2008).
2. G. G. Tartaglia, A. P. Pawar, S. Campioni, C. Dobson, F. Chiti, and M. Vendruscolo, J. Mol. Biol. 380, 425 (2008).
3. D. J. Selkoe, Nature (London) 426, 900 (2003).
4. M. M. Pallitto and R. M. Murphy, Biophys. J. 81, 1805 (2001).
5. D. Hall, N. Hirota, and C. Dobson, J. Mol. Biol. 351, 195 (2005).
6. C.-C. Lee, A. Nayak, A. Sethuraman, G. Belfort, and G. J. McRae, Biophys. J. 92, 3448 (2007).
7. E. T. Powers and D. L. Powers, Biophys. J. 94, 379 (2008).
8. T. Knowles, C. A. Waudby, G. L. Devlin, S. I. A. Cohen, A. Aguzzi, M. Vendruscolo, E. M. Terentjev, M. E. Welland, and C. M. Dobson, Science 326, 1533 (2009).
9. D. Kashchiev and S. Auer, J. Chem. Phys. 132, 215101 (2010).
10. J. Hardy and D. J. Selkoe, Science (N.Y.) 297, 353 (2002).
11. S. Auer, F. Meersman, C. Dobson, and M. Vendruscolo, PLOS Comput. Biol. 4, e1000222 (2008).
12. H. D. Nguyen and C. K. Hall, J. Am. Chem. Soc. 128, 1890 (2006).
13. B. Urbanc, L. Cruz, S. Yun, S. V. Buldyrev, G. Bitan, D. B. Teplow, and H. E. Stanley, Proc. Natl. Acad. Sci. U.S.A. 101, 17345 (2004).
14. C. Wu and J.-E. Shea, Curr. Opin. Struct. Biol. 21, 209 (2011).
15. T. R. Serio, A. G. Cashikar, A. S. Kowal, G. J. Sawicki, J. J. Moslehi, L. Serpell, M. F. Arnsdorf, and S. L. Lindquist, Science 289, 1317 (2000).
16. S. R. Collins, A. Douglass, R. D. Vale, and J. S. Weissman, PLOS Biol. 2, e321 (2004).
17. S. E. Hill, J. Robinson, G. Matthews, and M. Muschol, Biophys. J. 96, 3781 (2009).
18. S. E. Hill, T. Miti, T. Richmond, and M. Muschol, PLoS ONE 6, e18171 (2011).
19. P. Seubert, C. Vigo-Pelfrey, F. Esch, M. Lee, H. Dovey, D. Davis, S. Sinha, M. Schlossmacher, J. Whaley, and C. Swindlehurst, Nature (London) 359, 325 (1992).
20. P. Sengupta, K. Garai, B. Sahoo, Y. Shi, D. J. E. Callaway, and S. Maiti, Biochemistry 42, 10506 (2003).
21. J. D. Schmit, K. Ghosh, and K. A. Dill, Biophys. J. 100, 450 (2011).
22. T. Lührs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Döbeli, D. Schubert, and R. Riek, Proc. Natl. Acad. Sci. U.S.A. 102, 17342 (2005).
23. C. Wasmer, A. Lange, H. Van Melckebeke, A. B. Siemer, R. Riek, and B. H. Meier, Science 319, 1523 (2008).
24. R. Nelson, M. R. Sawaya, M. Balbirnie, A. O. Madsen, C. Riekel, R. Grothe, and D. Eisenberg, Nature (London) 435, 773 (2005).
25. S. Whitelam, R. Schulman, and L. Hedges, Phys. Rev. Lett. 109, 265506 (2012).
26. T. Knowles, W. Shu, G. L. Devlin, S. Meehan, S. Auer, C. Dobson, and M. E. Welland, Proc. Natl. Acad. Sci. U.S.A. 104, 10016 (2007).
27. T. Ban, M. Hoshino, S. Takahashi, D. Hamada, K. Hasegawa, H. Naiki, and Y. Goto, J. Mol. Biol. 344, 757 (2004).
28. J. L. Jiménez, E. J. Nettleton, M. Bouchard, C. V. Robinson, C. Dobson, and H. R. Saibil, Proc. Natl. Acad. Sci. U.S.A. 99, 9196 (2002).
29. A. T. Petkova, Y. Ishii, J. J. Balbach, O. N. Antzutkin, R. D. Leapman, F. Delaglio, and R. Tycko, Proc. Natl. Acad. Sci. U.S.A. 99, 16742 (2002).
30. C. F. Lee, L. Jean, and D. J. Vaux, Phys. Rev. E 80, 041906 (2009).
31. S. Redner, A Guide to First-Passage Processes (Cambridge University Press, 2007), p. 328.
32. A. K. Buell, A. Dhulesia, D. A. White, T. Knowles, C. M. Dobson, and M. E. Welland, Angew. Chem. 51, 5247 (2012).
33. V. Muñoz, P. A. Thompson, J. Hofrichter, and W. A. Eaton, Nature (London) 390, 196 (1997).
34. A. K. Buell, J. R. Blundell, C. Dobson, M. E. Welland, E. M. Terentjev, and T. Knowles, Phys. Rev. Lett. 104, 228101 (2010).
35. W. Hwang, S. Zhang, R. D. Kamm, and M. Karplus, Proc. Natl. Acad. Sci. U.S.A. 101, 12916 (2004).
36. D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
37. J. E. Kohn, I. S. Millett, J. Jacob, B. Zagrovic, T. M. Dillon, N. Cingel, R. S. Dothager, S. Seifert, P. Thiyagarajan, T. R. Sosnick, M. Z. Hasan, V. S. Pande, I. Ruczinski, S. Doniach, and K. W. Plaxco, Proc. Natl. Acad. Sci. U.S.A. 101, 12491 (2004).
38. A. J. Baldwin, T. Knowles, G. G. Tartaglia, A. W. Fitzpatrick, G. L. Devlin, S. L. Shammas, C. A. Waudby, M. F. Mossuto, S. Meehan, S. L. Gras, J. Christodoulou, S. J. Anthony-Cahill, P. D. Barker, M. Vendruscolo, and C. Dobson, J. Am. Chem. Soc. 133, 14160 (2011).
39. P. D. Ross and M. V. Rekharsky, Biophys. J. 71, 2144 (1996).
40. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, International Series of Monographs on Physics (Oxford University Press, USA, 1988), p. 408.
41. R. Carrotta, M. Manno, D. Bulone, V. Martorana, and P. L. San Biagio, J. Biol. Chem. 280, 30001 (2005).
42. K. Ghosh and K. A. Dill, Proc. Natl. Acad. Sci. U.S.A. 106, 10649 (2009).
43. S. S. L. Shammas, T. Knowles, A. J. Baldwin, C. C. E. Macphee, M. M. E. Welland, C. Dobson, G. L. Devlin, E. Cait, and L. Glyn, Biophys. J. 100, 2783 (2011).
43.Using Eq. (1) of Ref. 38 the midpoint of the melting curve corresponds to ΔG = −23 kJ/mol, so mH = ( − 23 + 56)(kJ/mol)/3.75M/Nβ.
44. H. Ramshini, C. Parrini, A. Relini, M. Zampagni, B. Mannini, A. Pesce, A. A. Saboury, M. Nemat-Gorgani, and F. Chiti, PLoS ONE 6, e16075 (2011).
45. N. L. Fawzi, Y. Okabe, E.-H. Yap, and T. Head-Gordon, J. Mol. Biol. 365, 535 (2007).
46. W. P. Esler, E. R. Stimson, J. M. Jennings, H. V. Vinters, J. R. Ghilardi, J. P. Lee, P. W. Mantyh, and J. E. Maggio, Biochemistry 39, 6288 (2000).
47. G. Reddy, J. E. Straub, and D. Thirumalai, Proc. Natl. Acad. Sci. U.S.A. 106, 11948 (2009).
48. M. R. Sawaya, S. Sambashivan, R. Nelson, M. I. Ivanova, S. A. Sievers, M. I. Apostol, M. J. Thompson, M. Balbirnie, J. J. W. Wiltzius, H. T. McFarlane, A. O. Madsen, C. Riekel, and D. Eisenberg, Nature (London) 447, 453 (2007).
49. N. G. Sgourakis, Y. Yan, S. A. McCallum, C. Wang, and A. E. Garcia, J. Mol. Biol. 368, 1448 (2007).

Data & Media loading...


Article metrics loading...



The growth of amyloid fibrils requires a disordered or partially unfolded protein to bind to the fibril and adapt the same conformation and alignment established by the fibril template. Since the H-bonds stabilizing the fibril are interchangeable, it is inevitable that H-bonds form between incorrect pairs of amino acids which are either incorporated into the fibril as defects or must be broken before the correct alignment can be found. This process is modeled by mapping the formation and breakage of H-bonds to a one-dimensional random walk. The resulting microscopic model of fibril growth is governed by two timescales: the diffusion time of the monomeric proteins, and the time required for incorrectly bound proteins to unbind from the fibril. The theory predicts that the Arrhenius behavior observed in experiments is due to off-pathway states rather than an on-pathway transition state. The predicted growth rates are in qualitative agreement with experiments on insulin fibril growth rates as a function of protein concentration, denaturant concentration, and temperature. These results suggest a templating mechanism where steric clashes due to a single mis-aligned molecule prevent the binding of additional molecules.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd