1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
An analytical continuation approach for evaluating emission lineshapes of molecular aggregates and the adequacy of multichromophoric Förster theory
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/18/10.1063/1.4803694
1.
1. G. R. Fleming and R. van Grondelle, Curr. Opin. Struct. Biol. 7, 738 (1997).
http://dx.doi.org/10.1016/S0959-440X(97)80086-3
2.
2. H. van Amerongen, L. Valkunas, and R. van Grondelle, Photosynthetic Excitons (World Scientific, Singapore, 2000).
3.
3. R. E. Blankenship, Molecular Mechanisms of Photosynthesis (World Scientific, London, 2002).
4.
4. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, Nature (London) 434, 625 (2005).
http://dx.doi.org/10.1038/nature03429
5.
5. G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, Nature (London) 446, 782 (2007).
http://dx.doi.org/10.1038/nature05678
6.
6. H. Lee, Y.-C. Cheng, and G. R. Fleming, Science 316, 1462 (2007).
http://dx.doi.org/10.1126/science.1142188
7.
7. A. Ishizaki and G. R. Fleming, Proc. Natl. Acad. Sci. U.S.A. 106, 17255 (2009).
http://dx.doi.org/10.1073/pnas.0908989106
8.
8. T. R. Calhoun, N. S. Ginsberg, G. S. Schlau-Cohen, Y.-C. Cheng, M. Ballottari, R. Bassi, and G. R. Fleming, J. Phys. Chem. B 113, 16291 (2009).
http://dx.doi.org/10.1021/jp908300c
9.
9. J. M. Womick and A. M. Moran, J. Phys. Chem. B 113, 15747 (2009).
http://dx.doi.org/10.1021/jp907644h
10.
10. E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, Nature (London) 463, 644 (2010).
http://dx.doi.org/10.1038/nature08811
11.
11. G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, Proc. Natl. Acad. Sci. U.S.A. 107, 12766 (2010).
http://dx.doi.org/10.1073/pnas.1005484107
12.
12. K. Lewis and J. Ogilvie, J. Phys. Chem. Lett. 3, 503 (2012).
http://dx.doi.org/10.1021/jz201592v
13.
13. G. S. Schlau-Cohen, A. Ishizaki, T. R. Calhoun, N. S. Ginsberg, M. Ballottari, R. Bassi, and G. R. Fleming, Nat. Chem. 4, 389 (2012).
http://dx.doi.org/10.1038/nchem.1303
14.
14. C. Y. Wong, R. M. Alvey, D. B. Turner, K. E. Wilk, D. A. Bryant, P. M. G. Curmi, R. J. Silbey, and G. D. Scholes, Nat. Chem. 4, 396 (2012).
http://dx.doi.org/10.1038/nchem.1302
15.
15. S. Westenhoff, D. Paleček, P. Edlund, P. Smith, and D. Zigmantas, J. Am. Chem. Soc. 134, 16484 (2012).
http://dx.doi.org/10.1021/ja3065478
16.
16. A. Olaya-Castro, C. F. Lee, F. F. Olsen, and N. F. Johnson, Phys. Rev. B 78, 085115 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.085115
17.
17. M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, J. Chem. Phys. 129, 174106 (2008).
http://dx.doi.org/10.1063/1.3002335
18.
18. M. B. Plenio and S. F. Huelga, New J. Phys. 10, 113019 (2008).
http://dx.doi.org/10.1088/1367-2630/10/11/113019
19.
19. S. Jang, Y.-C. Cheng, D. R. Reichman, and J. D. Eaves, J. Chem. Phys. 129, 101104 (2008).
http://dx.doi.org/10.1063/1.2977974
20.
20. P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, and A. Aspuru-Guzik, New J. Phys. 11, 033003 (2009).
http://dx.doi.org/10.1088/1367-2630/11/3/033003
21.
21. F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio, J. Chem. Phys. 131, 105106 (2009).
http://dx.doi.org/10.1063/1.3223548
22.
22. A. Ishizaki and G. R. Fleming, J. Chem. Phys. 130, 234111 (2009).
http://dx.doi.org/10.1063/1.3155372
23.
23. J. Cao and R. J. Silbey, J. Phys. Chem. A 113, 13825 (2009).
http://dx.doi.org/10.1021/jp9032589
24.
24. J. Strümpfer and K. Schulten, J. Chem. Phys. 131, 225101 (2009).
http://dx.doi.org/10.1063/1.3271348
25.
25. A. Nemeth, F. Milota, T. Mančal, V. Lukeš, J. Hauer, H. F. Kauffmann, and J. Sperling, J. Chem. Phys. 132, 184514 (2010).
http://dx.doi.org/10.1063/1.3404404
26.
26. T. Mančal, A. Nemeth, F. Milota, V. Lukeš, H. F. Kauffmann, and J. Sperling, J. Chem. Phys. 132, 184515 (2010).
http://dx.doi.org/10.1063/1.3404405
27.
27. M. Sarovar, A. Ishizaki, G. R. Fleming, and K. B. Whaley, Nat. Phys. 6, 462 (2010).
http://dx.doi.org/10.1038/nphys1652
28.
28. G. Tao and W. H. Miller, J. Phys. Chem. Lett. 1, 891 (2010).
http://dx.doi.org/10.1021/jz1000825
29.
29. P. Huo and D. F. Coker, J. Chem. Phys. 133, 184108 (2010).
http://dx.doi.org/10.1063/1.3498901
30.
30. S. Hoyer, M. Sarovar, and K. B. Whaley, New J. Phys. 12, 065041 (2010).
http://dx.doi.org/10.1088/1367-2630/12/6/065041
31.
31. A. W. Chin, A. Datta, F. Caruso, S. F. Huelga, and M. B. Plenio, New J. Phys. 12, 065002 (2010).
http://dx.doi.org/10.1088/1367-2630/12/6/065002
32.
32. J. Prior, A. W. Chin, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett. 105, 050404 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.050404
33.
33. J. Wu, F. Liu, Y. Shen, J. Cao, and R. J. Silbey, New J. Phys. 12, 105012 (2010).
http://dx.doi.org/10.1088/1367-2630/12/10/105012
34.
34. G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, Nat. Chem. 3, 763 (2011).
http://dx.doi.org/10.1038/nchem.1145
35.
35. D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, J. Phys. Chem. Lett. 2, 1904 (2011).
http://dx.doi.org/10.1021/jz200811p
36.
36. P. Giorda, S. Garnerone, P. Zanardi, and S. Lloyd, preprint arXiv:1106.1986 [quant-ph] (2011).
37.
37. N. Christensson, F. Milota, J. Hauer, J. Sperling, O. Bixner, A. Nemeth, and H. F. Kauffmann, J. Phys. Chem. B 115, 5383 (2011).
http://dx.doi.org/10.1021/jp109442b
38.
38. N. Renaud, M. A. Ratner, and V. Mujica, J. Chem. Phys. 135, 075102 (2011).
http://dx.doi.org/10.1063/1.3624376
39.
39. P. Nalbach, A. Ishizaki, G. R. Fleming, and M. Thorwart, New J. Phys. 13, 063040 (2011).
http://dx.doi.org/10.1088/1367-2630/13/6/063040
40.
40. A. Ishizaki and G. R. Fleming, J. Phys. Chem. B 115, 6227 (2011).
http://dx.doi.org/10.1021/jp112406h
41.
41. A. Kelly and Y. M. Rhee, J. Phys. Chem. Lett. 2, 808 (2011).
http://dx.doi.org/10.1021/jz200059t
42.
42. G. Ritschel, J. Roden, W. T. Strunz, A. Aspuru-Guzik, and A. Eisfeld, J. Phys. Chem. Lett. 2, 2912 (2011).
http://dx.doi.org/10.1021/jz201119j
43.
43. A. Olaya-Castro and G. D. Scholes, Int. Rev. Phys. Chem. 30, 49 (2011).
http://dx.doi.org/10.1080/0144235X.2010.537060
44.
44. J. Moix, J. Wu, P. Huo, D. Coker, and J. Cao, J. Phys. Chem. Lett. 2, 3045 (2011).
http://dx.doi.org/10.1021/jz201259v
45.
45. T. Scholak, F. de Melo, T. Wellens, F. Mintert, and A. Buchleitner, Phys. Rev. E 83, 021912 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.021912
46.
46. C. Kreisbeck, T. Kramer, M. Rodríguez, and B. Hein, J. Chem. Theory Comput. 7, 2166 (2011).
http://dx.doi.org/10.1021/ct200126d
47.
47. C. Olbrich, J. Strümpfer, K. Schulten, and U. Kleinekathöfer, J. Phys. Chem. Lett. 2, 1771 (2011).
http://dx.doi.org/10.1021/jz2007676
48.
48. D. B. Turner, R. Dinshaw, K.-K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, Phys. Chem. Chem. Phys. 14, 4857 (2012).
http://dx.doi.org/10.1039/c2cp23670b
49.
49. F. Fassioli, A. Olaya-Castro, and G. D. Scholes, J. Phys. Chem. Lett. 3, 31363142 (2012).
http://dx.doi.org/10.1021/jz3010317
50.
50. P. Brumer and M. Shapiro, Proc. Natl. Acad. Sci. U.S.A. 109, 19575 (2012).
http://dx.doi.org/10.1073/pnas.1211209109
51.
51. A. Ishizaki and G. R. Fleming, Annu. Rev. Condens. Matter Phys. 3, 333 (2012).
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125126
52.
52. T. C. Berkelbach, T. E. Markland, and D. R. Reichman, J. Chem. Phys. 136, 084104 (2012).
http://dx.doi.org/10.1063/1.3687342
53.
53. S. Hoyer, A. Ishizaki, and K. B. Whaley, Phys. Rev. E 86, 041911 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.041911
54.
54. S. Shim, P. Rebentrost, S. Valleau, and A. Aspuru-Guzik, Biophys. J. 102, 649 (2012).
http://dx.doi.org/10.1016/j.bpj.2011.12.021
55.
55. A. Shabani, M. Mohseni, H. Rabitz, and S. Lloyd, Phys. Rev. E 86, 011915 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.011915
56.
56. S. Jang and Y.-C. Cheng, WIREs Comput. Mol. Sci. 3, 84 (2013).
http://dx.doi.org/10.1002/wcms.1111
57.
57. H.-T. Chang and Y.-C. Cheng, J. Chem. Phys. 137, 165103 (2012).
http://dx.doi.org/10.1063/1.4761929
58.
58. M. Sarovar and K. B. Whaley, New J. Phys. 15, 013030 (2013).
http://dx.doi.org/10.1088/1367-2630/15/1/013030
59.
59. A. G. Redfield, IBM J. Res. Dev. 1, 19 (1957).
http://dx.doi.org/10.1147/rd.11.0019
60.
60. W. M. Zhang, T. Meier, V. Chernyak, and S. Mukamel, J. Chem. Phys. 108, 7763 (1998).
http://dx.doi.org/10.1063/1.476212
61.
61. M. Yang and G. R. Fleming, Chem. Phys. 282, 163 (2002).
http://dx.doi.org/10.1016/S0301-0104(02)00604-3
62.
62. T. Renger and R. A. Marcus, J. Phys. Chem. A 107, 8404 (2003).
http://dx.doi.org/10.1021/jp026789c
63.
63. T. Förster, Ann. Phys. (Berlin) 437, 55 (1948).
http://dx.doi.org/10.1002/andp.19484370105
64.
64. H. Sumi, J. Phys. Chem. B 103, 252 (1999).
http://dx.doi.org/10.1021/jp983477u
65.
65. K. Mukai, S. Abe, and H. Sumi, J. Phys. Chem. B 103, 6096 (1999).
http://dx.doi.org/10.1021/jp984469g
66.
66. G. D. Scholes and G. R. Fleming, J. Phys. Chem. B 104, 1854 (2000).
http://dx.doi.org/10.1021/jp993435l
67.
67. G. D. Scholes, X. J. Jordanides, and G. R. Fleming, J. Phys. Chem. B 105, 1640 (2001).
http://dx.doi.org/10.1021/jp003571m
68.
68. S. Jang, M. D. Newton, and R. J. Silbey, Phys. Rev. Lett. 92, 218301 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.218301
69.
69. A. L. Rogach, T. A. Klar, J. M. Lupton, A. Meijerink, and J. Feldmann, J. Mater. Chem. 19, 1208 (2009).
http://dx.doi.org/10.1039/b812884g
70.
70. S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, Phys. Rev. Lett. 89, 186802 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.186802
71.
71. A. Rogach, Nano Today 6, 355 (2011).
http://dx.doi.org/10.1016/j.nantod.2011.06.001
72.
72. E. Emelianova, S. Athanasopoulos, R. Silbey, and D. Beljonne, Phys. Rev. Lett. 104, 206405 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.206405
73.
73. E. Collini and G. D. Scholes, Science 323, 369 (2009).
http://dx.doi.org/10.1126/science.1164016
74.
74. J. Gierschner, Phys. Chem. Chem. Phys. 14, 13146 (2012).
http://dx.doi.org/10.1039/c2cp42057k
75.
75. J. Megow, B. Röder, A. Kulesza, V. Bonačić-Koutecký, and V. May, ChemPhysChem 12, 645 (2011).
http://dx.doi.org/10.1002/cphc.201000857
76.
76. S. Buhbut, S. Itzhakov, E. Tauber, M. Shalom, I. Hod, T. Geiger, Y. Garini, D. Oron, and A. Zaban, ACS Nano 4, 1293 (2010).
http://dx.doi.org/10.1021/nn100021b
77.
77. G. Raszewski and T. Renger, J. Am. Chem. Soc. 130, 4431 (2008).
http://dx.doi.org/10.1021/ja7099826
78.
78. F. Shibata, Y. Takahashi, and N. Hashitsume, J. Stat. Phys. 17, 171 (1977).
http://dx.doi.org/10.1007/BF01040100
79.
79. T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002).
http://dx.doi.org/10.1063/1.1470200
80.
80. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).
81.
81. V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems, 2nd ed. (revised and enlarged edition) (Wiley-VCH, Weinheim, 2004).
82.
82. A. Ishizaki, T. R. Calhoun, G. S. Schlau-Cohen, and G. R. Fleming, Phys. Chem. Chem. Phys. 12, 7319 (2010).
http://dx.doi.org/10.1039/c003389h
83.
83. T. Renger, M. Madjet, A. Knorr, and F. Müh, J. Plant Physiol. 168, 1497 (2011).
http://dx.doi.org/10.1016/j.jplph.2011.01.004
84.
84. G. R. Fleming and M. Cho, Annu. Rev. Phys. Chem. 47, 109 (1996).
http://dx.doi.org/10.1146/annurev.physchem.47.1.109
85.
85. G. Renger et al., Primary Processes of Photosynthesis: Principles and Apparatus (Royal Society of Chemistry, 2007).
86.
86. T. Takagahara, E. Hanamura, and R. Kubo, J. Phys. Soc. Jpn. 43, 811 (1977).
http://dx.doi.org/10.1143/JPSJ.43.811
87.
87. Y. Tanimura and R. Kubo, J. Phys. Soc. Jpn. 58, 101 (1989).
http://dx.doi.org/10.1143/JPSJ.58.101
88.
88. Y. Tanimura, J. Phys. Soc. Jpn. 75, 082001 (2006).
http://dx.doi.org/10.1143/JPSJ.75.082001
89.
89. R.-X. Xu and Y. Yan, Phys. Rev. E 75, 031107 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.031107
90.
90. S. Jang and R. J. Silbey, J. Chem. Phys. 118, 9324 (2003).
http://dx.doi.org/10.1063/1.1569240
91.
91. S. Jang and R. J. Silbey, J. Chem. Phys. 118, 9312 (2003).
http://dx.doi.org/10.1063/1.1569239
92.
92. M. Wendling, T. Pullerits, M. A. Przyjalgowski, S. I. E. Vulto, T. J. Aartsma, R. van Grondelle, and H. van Amerongen, J. Phys. Chem. B 104, 5825 (2000).
http://dx.doi.org/10.1021/jp000077+
93.
93. J. Adolphs and T. Renger, Biophys. J. 91, 2778 (2006).
http://dx.doi.org/10.1529/biophysj.105.079483
94.
94. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, New York, 2002).
95.
95. S. Nakajima, Prog. Theor. Phys. 20, 948 (1958).
http://dx.doi.org/10.1143/PTP.20.948
96.
96. R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).
http://dx.doi.org/10.1063/1.1731409
97.
97. R. Kubo, J. Math. Phys. 4, 174 (1963).
http://dx.doi.org/10.1063/1.1703941
98.
98. R. F. Fox, J. Math. Phys. 17, 1148 (1976).
http://dx.doi.org/10.1063/1.523041
99.
99. S. Mukamel, Chem. Phys. 37, 33 (1979).
http://dx.doi.org/10.1016/0301-0104(79)80004-X
100.
100. F. Shibata and T. Arimitsu, J. Phys. Soc. Jpn. 49, 891 (1980).
http://dx.doi.org/10.1143/JPSJ.49.891
101.
101. N. G. Van Kampen, Physica 74, 239 (1974).
http://dx.doi.org/10.1016/0031-8914(74)90122-0
102.
102. A. Ishizaki and Y. Tanimura, Chem. Phys. 347, 185 (2008).
http://dx.doi.org/10.1016/j.chemphys.2007.10.037
103.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/18/10.1063/1.4803694
Loading
/content/aip/journal/jcp/138/18/10.1063/1.4803694
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/18/10.1063/1.4803694
2013-05-10
2014-09-18

Abstract

In large photosynthetic chromophore-protein complexes not all chromophores are coupled strongly, and thus the situation is well described by formation of delocalized states in certain domains of strongly coupled chromophores. In order to describe excitation energy transfer among different domains without performing extensive numerical calculations, one of the most popular techniques is a generalization of Förster theory to multichromophoric aggregates (generalized Förster theory) proposed by Sumi [J. Phys. Chem. B103, 252 (Year: 1999)10.1021/jp983477u] and Scholes and Fleming [J. Phys. Chem. B104, 1854 (Year: 2000)10.1021/jp993435l]. The aim of this paper is twofold. In the first place, by means of analytic continuation and a time convolutionless quantum master equation approach, a theory of emission lineshape of multichromophoric systems or molecular aggregates is proposed. In the second place, a comprehensive framework that allows for a clear, compact, and effective study of the multichromophoric approach in the full general version proposed by Jang, Newton, and Silbey [Phys. Rev. Lett.92, 218301 (Year: 2004)10.1103/PhysRevLett.92.218301] is developed. We apply the present theory to simple paradigmatic systems and we show on one hand the effectiveness of time-convolutionless techniques in deriving lineshape operators and on the other hand we show how the multichromophoric approach can give significant improvements in the determination of energy transfer rates in particular when the systems under study are not the purely Förster regime. The presented scheme allows for an effective implementation of the multichromophoric Förster approach which may be of use for simulating energy transfer dynamics in large photosynthetic aggregates, for which massive computational resources are usually required. Furthermore, our method allows for a systematic comparison of multichromophoric Föster and generalized Förster theories and for a clear understanding of their respective limits of validity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/18/1.4803694.html;jsessionid=7llf8des6bhlq.x-aip-live-03?itemId=/content/aip/journal/jcp/138/18/10.1063/1.4803694&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: An analytical continuation approach for evaluating emission lineshapes of molecular aggregates and the adequacy of multichromophoric Förster theory
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/18/10.1063/1.4803694
10.1063/1.4803694
SEARCH_EXPAND_ITEM