1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
An analysis of fluctuations in supercooled TIP4P/2005 water
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/18/10.1063/1.4803868
1.
1. O. Mishima, and H. E. Stanley, Nature (London) 396, 329 (1998).
http://dx.doi.org/10.1038/24540
2.
2. H. E. Stanley, P. Kumar, L. Xu, Z. Yan, M. G. Mazza, S. V. Buldyrev, S.-H. Chen, and F. Mallamace, Physica A 386, 729 (2007).
http://dx.doi.org/10.1016/j.physa.2007.07.044
3.
3. P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Nature(London) 360, 324 (1992).
http://dx.doi.org/10.1038/360324a0
4.
4. C. Huang, T. M. Weiss, D. Nordlund, K. T. Wikfeldt, L. G. M. Pettersson, and A. Nilsson, J. Chem. Phys. 133, 134504 (2010).
http://dx.doi.org/10.1063/1.3495974
5.
5. K. T. Wikfeldt, C. Huang, A. Nilsson, and L. G. M. Pettersson, J. Chem. Phys. 134, 214506 (2011).
http://dx.doi.org/10.1063/1.3594545
6.
6. S. Sastry, P. G. Debenedetti, F. Sciortino, and H. E. Stanley, Phys. Rev. E 53, 6144 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.6144
7.
7. C. Huang, K. T. Wikfeldt, T. Tokushima, D. Nordlund, Y. Harada, U. Bergmann, M. Niebuhr, T. M. Weiss, Y. Horikawa, M. Leetmaa, M. P. Ljungberg, O. Takahashi, A. Lenz, L. Ojamäe, A. P. Lyubartsev, S. Shin, L. G. M. Pettersson, and A. Nilsson, Proc. Natl. Acad. Sci. U.S.A., 106, 15214 (2009).
http://dx.doi.org/10.1073/pnas.0904743106
8.
8. F. Stillinger and A. Rahmen, J. Chem. Phys. 60, 1545 (1974).
http://dx.doi.org/10.1063/1.1681229
9.
9. V. Molinero and E. B. Moore, J. Phys. Chem. B 113, 4008 (2009).
http://dx.doi.org/10.1021/jp805227c
10.
10. E. B. Moore and V. Molinero, J. Chem. Phys. 130, 244505 (2009).
http://dx.doi.org/10.1063/1.3158470
11.
11. Y. Liu, A. Z. Panagiotopoulos, and P. G. Debenedetti, J. Chem. Phys. 131, 104508 (2009).
http://dx.doi.org/10.1063/1.3229892
12.
12. F. Sciortino, I. Saika-Voivod, and P. H. Poole, Phys. Chem. Chem. Phys. 13, 19759 (2011).
http://dx.doi.org/10.1039/c1cp22316j
13.
13. Y. Liu, J. Palmer, A. Z. Panagiotopoulos, and P. G. Debenedetti, J. Chem. Phys. 137, 214505 (2012).
http://dx.doi.org/10.1063/1.4769126
14.
14. T. A. Kesselring, G. Franzese, S. V. Buldyrev, H. J. Hermann, and H. E. Stanley, Sci. Rep. 2, 474 (2012).
http://dx.doi.org/10.1038/srep00474
15.
15. P. Poole, R. Bowles, I. Saika-Voivod, and F. Scirotino, J. Chem. Phys. 138, 034505 (2013).
http://dx.doi.org/10.1063/1.4775738
16.
16. D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011).
http://dx.doi.org/10.1063/1.3643333
17.
17. D. T. Limmer and D. Chandler, preprint arXiv:1303.3086v1 (2013).
18.
18. J. L. F. Abascal and C. Vega, J. Chem. Phys. 133, 234502 (2010).
http://dx.doi.org/10.1063/1.3506860
19.
19. A. B. Bhatia and D. E. Thornton, Phys. Rev. B 2, 3004 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.3004
20.
20. S. D. Overduin and G. N. Patey, J. Phys. Chem. B 116, 12014 (2012).
http://dx.doi.org/10.1021/jp3075749
21.
21. C. T. Moynihan, Mater. Res. Soc. Symp. Proc. 455, 411 (1996).
http://dx.doi.org/10.1557/PROC-455-411
22.
22. E. G. Ponyatovsky, V. V. Sinitsyn, and T. A. Pozdnyakova, J. Chem. Phys. 109, 2413 (1998).
http://dx.doi.org/10.1063/1.476809
23.
23. M. J. Cuthbertson and P. H. Poole, Phys. Rev. Lett. 106, 115706 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.115706
24.
24. C. E. Bertrand and M. A. Anisimov, J. Phys. Chem. B 115, 14099 (2011).
http://dx.doi.org/10.1021/jp204011z
25.
25. V. Holten and M. A. Anisimov, Sci. Rep. 2, 713 (2012).
http://dx.doi.org/10.1038/srep00713
26.
26. V. Holten, D. T. Limmer, V. Molinero, and M. A. Anisimov, J. Chem. Phys. 138, 174501 (2013).
http://dx.doi.org/10.1063/1.4802992
27.
27. F. Sciortino and S. L. Fornilli, J. Chem. Phys. 90, 2786 (1989).
http://dx.doi.org/10.1063/1.455927
28.
28. K. T. Wikfeldt, A. Nilsson, and L. G. M. Pettersson, Phys. Chem. Chem. Phys. 13, 19918 (2011) .
http://dx.doi.org/10.1039/c1cp22076d
29.
29. A. Nilsson, C. Huang, and L. G. M. Pettersson, J. Mol. Liq. 176, 2 (2012).
http://dx.doi.org/10.1016/j.molliq.2012.06.021
30.
30. J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005).
http://dx.doi.org/10.1063/1.2121687
31.
31. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, J. Comput. Chem. 26, 1701 (2005).
http://dx.doi.org/10.1002/jcc.20291
32.
32. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pederson, J. Chem. Phys. 103, 8577 (1995).
http://dx.doi.org/10.1063/1.470117
33.
33. S. Nosé, Mol. Phys. 52, 255 (1984).
http://dx.doi.org/10.1080/00268978400101201
34.
34. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
35.
35. M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).
http://dx.doi.org/10.1063/1.328693
36.
36. J. R. Errington and P. G. Debenedetti, Nature (London) 409, 318 (2001).
http://dx.doi.org/10.1038/35053024
37.
37. J. J. Salacuse, A. R. Denton, and P. A. Egelstaff, Phys. Rev. E 53, 2382 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.2382
38.
38. E. B. Moore, E. de la Llave, K. Welke, D. A. Scherlis, and V. Molinero, Phys. Chem. Chem. Phys. 12, 4124 (2010).
http://dx.doi.org/10.1039/b919724a
39.
39. J. C. Phillips, Rep. Prog. Phys. 59, 1133 (1996).
http://dx.doi.org/10.1088/0034-4885/59/9/003
40.
40. F. Sedlmeier, D. Horinek, and R. R. Netz, J. Am. Chem. Soc. 133, 1391 (2011).
http://dx.doi.org/10.1021/ja1064137
41.
41. H. Kanno and C. A. Angell, J. Chem. Phys. 70, 4008 (1979).
http://dx.doi.org/10.1063/1.438021
42.
42. O. Conde, J. Teixeira, and P. Papon, J. Chem. Phys. 76, 3747 (1982).
http://dx.doi.org/10.1063/1.443413
43.
43. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, New York, 1971).
44.
44. S. K. Das, J. Horbach, and K. Binder, J. Chem. Phys. 119, 1547 (2003).
http://dx.doi.org/10.1063/1.1580106
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/18/10.1063/1.4803868
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The long-time part of the intermediate self-scattering function, (, ), at = 18.6 nm for temperatures indicated in the legend (top) and mean-squared displacements for different temperatures as indicated in the legend (bottom).

Image of FIG. 2.

Click to view

FIG. 2.

Normalized probability distribution function of the order parameter (Eq. (1) ), for different temperatures obtained with ρ = 1.012 g/cm. Vertical lines show the median values for 193 and 240 K.

Image of FIG. 3.

Click to view

FIG. 3.

Partial oxygen-oxygen pair correlation functions, () (top panel), () (2nd panel), () (3rd panel), and the total pair correlation function, () (bottom panel), for 193 K (red), 195 K (black), 200 K (yellow), and 240 K (dark blue).

Image of FIG. 4.

Click to view

FIG. 4.

Density-density, (), concentration-concentration, (), and density-concentration, (), structure factors for different temperatures as denoted in the legend.

Image of FIG. 5.

Click to view

FIG. 5.

The functions () (thick lines) and θ() (thin lines), at small wave number, for different temperatures as denoted in the legend.

Image of FIG. 6.

Click to view

FIG. 6.

The isothermal compressibility, κ, and . provides a measure of the structure factor in the absence of concentration fluctuations. The error bars represent estimated standard deviations, which are smaller than the symbols for .

Image of FIG. 7.

Click to view

FIG. 7.

The functions 1/ () and 1/ () with , along with fits (lines) to Eq. (13) , for the temperatures denoted in the legend.

Image of FIG. 8.

Click to view

FIG. 8.

Correlation lengths, ξ obtained from Eq. (13) , along with fits (lines) to Eq. (14) . The black and red curves are as denoted in the legend. The error bars represent estimated standard deviations.

Image of FIG. 9.

Click to view

FIG. 9.

Density distributions obtained at 1400 bar and 191 K, initially started from a density of ρ = 1.000 g/cm, calculated over different 500 ns time windows. Density distribution shapes and average densities calculated from different time windows vary significantly.

Image of FIG. 10.

Click to view

FIG. 10.

Density distributions obtained at 1400 bar and 191 K with 500 (top panel), 8000 (middle panel), and 32 000 (bottom panel) molecules. In all panels, density distributions from two different simulations are shown, one started with ρ = 1.000 g/cm (black) and the other with ρ = 1.029 g/cm. The average density distribution from the two runs is also shown. Simulation times, excluding equilibration, are given in the legend.

Image of FIG. 11.

Click to view

FIG. 11.

Density distributions obtained at 1450 bar and 191 K with 500 (top panel), 8000 (middle panel), and 32 000 (bottom panel) molecules. In the top two panels, density distributions from two different simulations are shown, one started at lower density, either ρ = 1.000 g/cm (for 8000 molecules), or ρ = 1.012 g/cm (for 500 molecules), and the other with ρ = 1.029 g/cm. The average density distribution from the two runs is also shown. Simulation times, excluding equilibration, are given in the legend.

Loading

Article metrics loading...

/content/aip/journal/jcp/138/18/10.1063/1.4803868
2013-05-09
2014-04-24

Abstract

Large-scale, long-time molecular dynamics simulations are used to investigate fluctuations in the TIP4P/2005 water model in the supercooled region (240-190 K). Particular attention is focused in the vicinity of a previously reported liquid-liquid critical point[J. L. F. Abascal and C. Vega, J. Chem. Phys.133, 234502 (Year: 2010)]10.1063/1.3506860. Water is viewed as an equimolar binary mixture with “species” defined based on a local tetrahedral order parameter. A Bhatia-Thornton fluctuation analysis is used to show that species concentration fluctuations couple to density fluctuations and completely account for the anomalous increase in the structure factor at small wave number observed under supercooled conditions. Although we find that both concentration and density fluctuations increase with decreasing temperature along the proposed critical isochore, we cannot confirm the existence of a liquid-liquid critical point. Our simulations suggest that the parameters previously reported are not a true liquid-liquid critical point and we find no evidence of two-phase coexistence in its vicinity. It is shown that very long simulations (on the order of 8 μs for 500 molecules) are necessary to obtain well converged density distributions for deeply supercooled water and this is especially important if one is seeking direct evidence of a two-phase region.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/18/1.4803868.html;jsessionid=7jbt6sd4chijc.x-aip-live-06?itemId=/content/aip/journal/jcp/138/18/10.1063/1.4803868&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: An analysis of fluctuations in supercooled TIP4P/2005 water
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/18/10.1063/1.4803868
10.1063/1.4803868
SEARCH_EXPAND_ITEM