1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Explicitly-correlated second-order correction to the correlation energy in the random-phase approximation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/18/10.1063/1.4804282
1.
1. H. Eshuis and F. Furche, J. Chem. Phys. 136, 084105 (2012).
http://dx.doi.org/10.1063/1.3687005
2.
2. T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
3.
3. T. Helgaker, W. Klopper, H. Koch, and J. Noga, J. Chem. Phys. 106, 9639 (1997).
http://dx.doi.org/10.1063/1.473863
4.
4. C. Hättig, W. Klopper, A. Köhn, and D. P. Tew, Chem. Rev. 112, 4 (2012).
http://dx.doi.org/10.1021/cr200168z
5.
5. L. G. Kong, F. A. Bischoff, and E. F. Valeev, Chem. Rev. 112, 75 (2012).
http://dx.doi.org/10.1021/cr200204r
6.
6. S. Ten-no and J. Noga, WIREs Comput. Mol. Sci. 2, 114 (2012).
http://dx.doi.org/10.1002/wcms.68
7.
7. B. G. Janesko and G. E. Scuseria, Phys. Chem. Chem. Phys. 11, 9677 (2009).
http://dx.doi.org/10.1039/b910905f
8.
8. G. Jansen, R.-F. Liu, and J. G. Ángyán, J. Chem. Phys. 133, 154106 (2010).
http://dx.doi.org/10.1063/1.3481575
9.
9. J. G. Ángyán, R.-F. Liu, J. Toulouse, and G. Jansen, J. Chem. Theory Comput. 7, 3116 (2011).
http://dx.doi.org/10.1021/ct200501r
10.
10. A. Heßelmann and A. Görling, Mol. Phys. 109, 2473 (2011).
http://dx.doi.org/10.1080/00268976.2011.614282
11.
11. H. Eshuis, J. E. Bates, and F. Furche, Theor. Chem. Acc. 131, 1084 (2012).
http://dx.doi.org/10.1007/s00214-011-1084-8
12.
12. X. Ren, P. Rinke, C. Joas, and M. Scheffler, J. Mater. Sci. 47, 7447 (2012).
http://dx.doi.org/10.1007/s10853-012-6570-4
13.
13. W. Klopper, A. M. Teale, S. Coriani, T. B. Pedersen, and T. Helgaker, Chem. Phys. Lett. 510, 147 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.04.101
14.
14. F. Furche, Phys. Rev. B 64, 195120 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.195120
15.
15. F. Furche, J. Chem. Phys. 129, 114105 (2008).
http://dx.doi.org/10.1063/1.2977789
16.
16. G. E. Scuseria, T. M. Henderson, and D. C. Sorensen, J. Chem. Phys. 129, 231101 (2008).
http://dx.doi.org/10.1063/1.3043729
17.
17. D. P. Tew and W. Klopper, Mol. Phys. 108, 315 (2010).
http://dx.doi.org/10.1080/00268970903449388
18.
18. S. Ten-no, J. Chem. Phys. 121, 117 (2004).
http://dx.doi.org/10.1063/1.1757439
19.
19. A. Grüneis, M. Marsman, J. Harl, L. Schimka, and G. Kresse, J. Chem. Phys. 131, 154115 (2009).
http://dx.doi.org/10.1063/1.3250347
20.
20. H. Eshuis, J. Yarkony, and F. Furche, J. Chem. Phys. 132, 234114 (2010).
http://dx.doi.org/10.1063/1.3442749
21.
21. A. Heßelmann, J. Chem. Phys. 134, 204107 (2011).
http://dx.doi.org/10.1063/1.3590916
22.
22. J. Toulouse, I. C. Gerber, G. Jansen, J. G. Ángyán, and A. Savin, Phys. Rev. Lett. 102, 096404 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.096404
23.
23. J. Toulouse, W. Zhu, J. G. Ángyán, and A. Savin, Phys. Rev. A 82, 032502 (2010).
http://dx.doi.org/10.1103/PhysRevA.82.032502
24.
24. K. D. Vogiatzis, E. C. Barnes, and W. Klopper, Chem. Phys. Lett. 503, 157 (2011).
http://dx.doi.org/10.1016/j.cplett.2010.12.065
25.
25. R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
http://dx.doi.org/10.1063/1.462569
26.
26. A. K. Wilson, T. van Mourik, and T. H. Dunning, Jr., J. Mol. Struct.: THEOCHEM 388, 339 (1996).
http://dx.doi.org/10.1016/S0166-1280(96)80048-0
27.
27. T. van Mourik, A. K. Wilson, and T. H. Dunning, Mol. Phys. 96, 529 (1999).
http://dx.doi.org/10.1080/00268979909482990
28.
28. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
29.
29. R. Ahlrichs, M. Bär, M. Häser, H. Horn, and V. Kölmel, Chem. Phys. Lett. 162, 165 (1989).
http://dx.doi.org/10.1016/0009-2614(89)85118-8
30.
30. O. Treutler and R. Ahlrichs, J. Chem. Phys. 102, 346 (1995).
http://dx.doi.org/10.1063/1.469408
31.
31.TURBOMOLE V6.4, a development of Universität Karlsruhe (TH) and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007, see http://www.turbomole.com.
32.
32. F. Weigend, A. Köhn, and C. Hättig, J. Chem. Phys. 116, 3175 (2002).
http://dx.doi.org/10.1063/1.1445115
33.
33. C. Hättig, Phys. Chem. Chem. Phys. 7, 59 (2005).
http://dx.doi.org/10.1039/b415208e
34.
34. C. Hättig and F. Weigend, J. Chem. Phys. 113, 5154 (2000).
http://dx.doi.org/10.1063/1.1290013
35.
35. C. Hättig, J. Chem. Phys. 118, 7751 (2003).
http://dx.doi.org/10.1063/1.1564061
36.
36. S. Ten-no, Chem. Phys. Lett. 398, 56 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.09.041
37.
37. D. P. Tew and W. Klopper, J. Chem. Phys. 123, 074101 (2005).
http://dx.doi.org/10.1063/1.1999632
38.
38. E. F. Valeev, Chem. Phys. Lett. 395, 190 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.07.061
39.
39. S. Kedžuch, M. Milko, and J. Noga, Int. J. Quantum Chem. 105, 929 (2005).
http://dx.doi.org/10.1002/qua.20744
40.
40. R. A. Bachorz, F. A. Bischoff, A. Glöß, C. Hättig, S. Höfener, W. Klopper, and D. P. Tew, J. Comput. Chem. 32, 2492 (2011).
http://dx.doi.org/10.1002/jcc.21825
41.
41. K. E. Yousaf and K. A. Peterson, Chem. Phys. Lett. 476, 303 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.06.003
42.
42. K. A. Peterson, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 128, 084102 (2008).
http://dx.doi.org/10.1063/1.2831537
43.
43. R. Haunschild and W. Klopper, J. Chem. Phys. 136, 164102 (2012).
http://dx.doi.org/10.1063/1.4704796
44.
44. J. Noga, S. Kedžuch, and J. Šimunek, J. Chem. Phys. 127, 034106 (2007).
http://dx.doi.org/10.1063/1.2751163
45.
45. T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys. 127, 221106 (2007).
http://dx.doi.org/10.1063/1.2817618
46.
46. X. Ren, A. Tkatchenko, P. Rinke, and M. Scheffler, Phys. Rev. Lett. 106, 153003 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.153003
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/18/10.1063/1.4804282
Loading
/content/aip/journal/jcp/138/18/10.1063/1.4804282
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/18/10.1063/1.4804282
2013-05-10
2014-08-29

Abstract

Within the framework of density-functional theory, the basis-set convergence of energies obtained from the random-phase approximation to the correlation energy is equally slow as in wavefunction theory, as for example in coupled-cluster or many-body perturbation theory. Fortunately, the slow basis-set convergence of correlation energies obtained in the random-phase approximation can be accelerated in exactly the same manner as in wavefunction theory, namely by using explicitly correlated two-electron basis functions that are functions of the interelectronic distances. This is demonstrated in the present work.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/18/1.4804282.html;jsessionid=2r17p95r9gll.x-aip-live-03?itemId=/content/aip/journal/jcp/138/18/10.1063/1.4804282&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Explicitly-correlated second-order correction to the correlation energy in the random-phase approximation
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/18/10.1063/1.4804282
10.1063/1.4804282
SEARCH_EXPAND_ITEM