1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Dynamical embedding: Correct quantum response from coupling TDDFT for a small cluster with classical near-field electrodynamics for an extended region
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/18/10.1063/1.4804544
1.
1. R. P. Van Duyne, Science 306, 985 (2004).
http://dx.doi.org/10.1126/science.1104976
2.
2. D. Neuhauser and K. Lopata, J. Chem. Phys. 127, 154715 (2007).
http://dx.doi.org/10.1063/1.2790436
3.
3. A. J. White, M. Sukharev, and M. Galperin, Phys. Rev. B 86, 205324 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.205324
4.
4. A. O. Govorov and Z. Fan, ChemPhysChem 13, 2551 (2012).
http://dx.doi.org/10.1002/cphc.201100958
5.
5. J. Zuloaga, E. Prodan, and P. Nordlander, Nano Lett. 9, 887 (2009).
http://dx.doi.org/10.1021/nl803811g
6.
6. P. Song, P. Nordlander, and S. Gao, J. Chem. Phys. 134, 074701 (2011).
http://dx.doi.org/10.1063/1.3554420
7.
7. S. M. Morton, D. W. Silverstein, and L. Jensen, Chem. Rev. 111, 3962 (2011).
http://dx.doi.org/10.1021/cr100265f
8.
8. A. Taflove, Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1998).
9.
9. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).
http://dx.doi.org/10.1126/science.1089171
10.
10. A. Coomar, C. Arntsen, K. A. Lopata, S. Pistinner, and D. Neuhauser, J. Chem. Phys. 135, 084121 (2011).
http://dx.doi.org/10.1063/1.3626549
11.
11. D. J. Masiello and G. C. Schatz, Phys. Rev. A 78, 042505 (2008).
http://dx.doi.org/10.1103/PhysRevA.78.042505
12.
12. J. L. Payton, S. M. Morton, J. E. Moore, and L. Jensen, J. Chem. Phys. 136, 214103 (2012).
http://dx.doi.org/10.1063/1.4722755
13.
13. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, Nat. Commun. 3, 825 (2012).
http://dx.doi.org/10.1038/ncomms1806
14.
14. Y. Gao and D. Neuhauser, J. Chem. Phys. 137, 074113 (2012).
http://dx.doi.org/10.1063/1.4745847
15.
15. N. Govind, Y. A. Wang, and E. A. Carter, J. Chem. Phys. 110, 7677 (1999).
http://dx.doi.org/10.1063/1.478679
16.
16. J. D. Goodpaster, N. Ananth, F. R. Manby, and T. F. Miller III, J. Chem. Phys. 133, 084103 (2010).
http://dx.doi.org/10.1063/1.3474575
17.
17. C. Huang, M. Pavone, and E. A. Carter, J. Chem. Phys. 134, 154110 (2011).
http://dx.doi.org/10.1063/1.3577516
18.
18. A. Liebsch, Electronic Excitations at Metal Surfaces (Plenum Press, New York, 1997).
19.
19. J. M. Lastra, J. W. Kaminski, and T. A. Wesolowski, J. Chem. Phys. 129, 074107 (2008).
http://dx.doi.org/10.1063/1.2969814
20.
20. W. Liang, X. Li, L. R. Dalton, B. H. Robinson, and B. E. Eichinger, J. Phys. Chem. B 115, 12566 (2011).
http://dx.doi.org/10.1021/jp2069896
21.
21. J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).
http://dx.doi.org/10.1088/0953-8984/14/11/302
22.
22. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.1993
23.
23. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
24.
24. V. M. Silkin, E. V. Chulkov, and P. M. Echenique, Phys. Rev. Lett. 93, 176801 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.176801
25.
25. W. Ku and A. G. Eguiluz, Phys. Rev. Lett. 82, 2350 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.2350
26.
26. C. A. Ullrich, U. J. Gossmann, and E. K. Gross, Phys. Rev. Lett. 74, 872 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.872
27.
27. M. R. Silva-Junior, M. Schreiber, S. P. Sauer, and W. Thiel, J. Chem. Phys. 129, 104103 (2008).
http://dx.doi.org/10.1063/1.2973541
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/18/10.1063/1.4804544
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Embedding a Mg(0001) slab. The entire 6-layer Mg slab is partitioned as a 3-layer 3 × 4 Mg cluster with 36 atoms (solid gray spheres) of size 9.6 × 11.1 × 7.8 Å embedded within a near-field (NF) metal (transparent part). The Mg cluster is the central upper part of the entire slab. The adsorption geometry of a HO molecule (red and white spheres) is also displayed.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Normalized average dipoles and (b) absorption coefficients (imaginary part of the polarizabilities) for a clean Mg slab calculated by different methods: fully TDDFT (all quantum), NF (classical), and embedding. In (c) and (d) the embedding result is compared with dipoles and absorption of a free cluster (clu-TDDFT) and a bare dielectric environment (env-NF).

Image of FIG. 3.

Click to view

FIG. 3.

(a) Differential polarizability between adsorbed and clean Mg surface and (b) dynamical charge transfer to the HO by the different methods: full TDDFT of the entire system (339 atoms), an isolated small cluster of the embedded HO molecule with 36 Mg atoms, which does not agree with the TDDFT results; and embedding quantum mechanical clusters with 36 and 90 (“big” Mg atoms; the TDDFT and both embedded clusters show an overall shoulder between 7 and 8.5 eV (with better agreement for the larger cluster), while the free cluster is strongly shifted to lower frequencies.

Loading

Article metrics loading...

/content/aip/journal/jcp/138/18/10.1063/1.4804544
2013-05-13
2014-04-20

Abstract

We show how to obtain the correct electronic response of a large system by embedding; a small region is propagated by TDDFT (time-dependent density functional theory) simultaneously with a classical electrodynamics evolution using the Near-Field method over a larger external region. The propagations are coupled through a combined time-dependent density yielding a common Coulomb potential. We show that the embedding correctly describes the plasmonic response of a Mg(0001) slab and its influence on the dynamical charge transfer between an adsorbed HO molecule and the substrate, giving the same spectral shape as full TDDFT (similar plasmon peak and molecular-dependent differential spectra) with much less computational effort. The results demonstrate that atomistic embedding electrodynamics is promising for nanoplasmonics and nanopolaritonics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/18/1.4804544.html;jsessionid=57sa7ertte301.x-aip-live-01?itemId=/content/aip/journal/jcp/138/18/10.1063/1.4804544&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Dynamical embedding: Correct quantum response from coupling TDDFT for a small cluster with classical near-field electrodynamics for an extended region
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/18/10.1063/1.4804544
10.1063/1.4804544
SEARCH_EXPAND_ITEM