1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Electronic structure of the solvated chloride anion from first principles molecular dynamics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/18/10.1063/1.4804621
1.
1. Q. Mi, A. Zhanaidarova, B. S. Brunschwig, H. B. Gray, and N. S. Lewis, Energy Environ. Sci. 5, 5694 (2012).
http://dx.doi.org/10.1039/c2ee02929d
2.
2. J. C. Hill and K.-S. Choi, J. Phys. Chem. C 116, 7612 (2012).
http://dx.doi.org/10.1021/jp209909b
3.
3. J. P. D. Abbatt, S. Benz, D. J. Cziczo, Z. Kanji, U. Lohmann, and O. Möhler, Science 313, 1770 (2006).
http://dx.doi.org/10.1126/science.1129726
4.
4. A. W. Omta, M. F. Kropman, S. Woutersen, and H. J. Bakker, Science 301, 347 (2003).
http://dx.doi.org/10.1126/science.1084801
5.
5. L. X. Dang, G. K. Schenter, V.-A. Glezakou, and J. L. Fulton, J. Phys. Chem. B 110, 23644 (2006).
http://dx.doi.org/10.1021/jp064661f
6.
6. R. Mancinelli, A. Botti, F. Bruni, M. A. Ricci, and A. K. Soper, J. Phys. Chem. B 111, 13570 (2007).
http://dx.doi.org/10.1021/jp075913v
7.
7. H. J. Kulik, N. Marzari, A. A. Correa, D. Prendergast, E. Schwegler, and G. Galli, J. Phys. Chem. B 114, 9594 (2010).
http://dx.doi.org/10.1021/jp103526y
8.
8. A. Bankura, V. Carnevale, and M. L. Klein, J. Chem. Phys. 138, 014501 (2013).
http://dx.doi.org/10.1063/1.4772761
9.
9. P. B. Petersen and R. J. Saykally, J. Phys. Chem. B 110, 14060 (2006).
http://dx.doi.org/10.1021/jp0601825
10.
10. S. Park and M. D. Fayer, Proc. Natl. Acad. Sci. U.S.A. 104, 16731 (2007).
http://dx.doi.org/10.1073/pnas.0707824104
11.
11. J. D. Smith, R. J. Saykally, and P. L. Geissler, J. Am. Chem. Soc. 129, 13847 (2007).
http://dx.doi.org/10.1021/ja071933z
12.
12. B. S. Mallik, A. Semparithi, and A. Chandra, J. Chem. Phys. 129, 194512 (2008).
http://dx.doi.org/10.1063/1.3006032
13.
13. A. M. Jubb and H. C. Allen, J. Phys. Chem. C 116, 13161 (2012).
http://dx.doi.org/10.1021/jp302585h
14.
14. J. L. Skinner, P. A. Pieniazek, and S. M. Gruenbaum, Acc. Chem. Res. 45, 93 (2012).
http://dx.doi.org/10.1021/ar200122a
15.
15. B. Winter, R. Weber, I. V. Hertel, M. Faubel, P. Jungwirth, E. C. Brown, and S. E. Bradforth, J. Am. Chem. Soc. 127, 7203 (2005).
http://dx.doi.org/10.1021/ja042908l
16.
16. R. Seidel, S. Thürmer, and B. Winter, J. Phys. Chem. Lett. 2, 633 (2011).
http://dx.doi.org/10.1021/jz101636y
17.
17. C. Adriaanse, M. Sulpizi, J. VandeVondele, and M. Sprik, J. Am. Chem. Soc. 131, 6046 (2009).
http://dx.doi.org/10.1021/ja809155k
18.
18. C. Adriaanse, J. Cheng, V. Chau, M. Sulpiz, J. VandeVondele, and M. Sprik, J. Phys. Chem. Lett. 3, 3411 (2012).
http://dx.doi.org/10.1021/jz3015293
19.
19. D. Ghosh, A. Roy, R. Seidel, B. Winter, S. Bradforth, and A. I. Krylov, J. Phys. Chem. B 116, 7269 (2012).
http://dx.doi.org/10.1021/jp301925k
20.
20. E. Pluhařová, M. Ončák, R. Seidel, C. Schroeder, W. Schroeder, B. Winter, S. E. Bradforth, P. Jungwirth, and P. Slavíček, J. Phys. Chem. B 116, 13254 (2012).
http://dx.doi.org/10.1021/jp306348b
21.
21. A. J. Cohen, P. Mori-Sánchez, and W. T. Yang, Science 321, 792 (2008).
http://dx.doi.org/10.1126/science.1158722
22.
22. A. J. Cohen, P. Mori-Sánchez, and W. Yang, Chem. Rev. 112, 289 (2012).
http://dx.doi.org/10.1021/cr200107z
23.
23. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
24.
24. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1396
25.
25. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
http://dx.doi.org/10.1063/1.478522
26.
26. Y. Ping, D. Rocca, and G. Galli, Chem. Soc. Rev. 42, 2437 (2013).
http://dx.doi.org/10.1039/c3cs00007a
27.
27. L. Hedin, Phys. Rev. 139, A796 (1965).
http://dx.doi.org/10.1103/PhysRev.139.A796
28.
28. H.-V. Nguyen, T. A. Pham, D. Rocca, and G. Galli, Phys. Rev. B 85, 081101 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.081101
29.
30.
30. D. R. Hamann, Phys. Rev. B 40, 2980 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.2980
31.
31. L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).
http://dx.doi.org/10.1103/PhysRevLett.48.1425
32.
32. J. C. Grossman, E. Schwegler, E. W. Draeger, F. Gygi, and G. Galli, J. Chem. Phys. 120, 300 (2004).
http://dx.doi.org/10.1063/1.1630560
33.
33. C. Zhang, D. Donadio, F. Gygi, and G. Galli, J. Chem. Theory Comput. 7, 1443 (2011).
http://dx.doi.org/10.1021/ct2000952
34.
34. F. Gygi, J. L. Fattebert, and E. Schwegler, Comput. Phys. Commun. 155, 1 (2003).
http://dx.doi.org/10.1016/S0010-4655(03)00315-1
35.
35. T. A. Pham, H.-V. Nguyen, D. Rocca, and G. Galli, Phys. Rev. B 87, 155148 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.155148
36.
36. S. Cummings, J. E. Enderby, G. W. Neilson, J. R. Newsome, R. A. Howe, W. S. Howells, and A. K. Soper, Nature (London) 287, 714 (1980).
http://dx.doi.org/10.1038/287714a0
37.
37. A. P. Copestake, G. W. Neilson, and J. E. Enderby, J. Phys. C 18, 4211 (1985).
http://dx.doi.org/10.1088/0022-3719/18/22/005
38.
38. M. Yamagami, H. Wakita, and T. Yamaguchi, J. Chem. Phys. 103, 8174 (1995).
http://dx.doi.org/10.1063/1.470181
39.
39. T. Megyes, I. Bakó, S. Bálint, T. Grósz, and T. Radnai, J. Mol. Liq. 129, 63 (2006).
http://dx.doi.org/10.1016/j.molliq.2006.08.013
40.
40. A. Tongraar, J. T-Thienprasert, S. Rujirawat, and S. Limpijumnong, Phys. Chem. Chem. Phys. 12, 10876 (2010).
http://dx.doi.org/10.1039/c0cp00136h
41.
41. F. Bruni, S. Imberti, R. Mancinelli, and M. A. Ricci, J. Chem. Phys. 136, 064520 (2012).
http://dx.doi.org/10.1063/1.3684633
42.
42. T. Ikeda, M. Hirata, and T. Kimura, J. Chem. Phys. 119, 12386 (2003).
http://dx.doi.org/10.1063/1.1627323
43.
43. J. M. Heuft and E. J. Meijer, J. Chem. Phys. 119, 11788 (2003).
http://dx.doi.org/10.1063/1.1624362
44.
44. R. Scipioni, D. A. Schmidt, and M. Boero, J. Chem. Phys. 130, 024502 (2009).
http://dx.doi.org/10.1063/1.3054197
45.
45. N. Galamba, R. A. Mata, and B. J. C. Cabral, J. Phys. Chem. A 113, 14684 (2009).
http://dx.doi.org/10.1021/jp904687k
46.
46. A. Bernas, C. Ferradini, and J.-P. Jay-Gerin, Chem. Phys. 222, 151 (1997).
http://dx.doi.org/10.1016/S0301-0104(97)00213-9
47.
47. T. A. Pham et al., “Electronic structure of liquid water using many body perturbation theory” (unpublished); GW calculations were carried out using 64 water molecule samples and the method of Ref. 28.
48.
48. V. Garbuio, M. Cascella, L. Reining, R. D. Sole, and O. Pulci, Phys. Rev. Lett. 97, 137402 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.137402
49.
49. D. Lu, F. Gygi, and G. Galli, Phys. Rev. Lett. 100, 147601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.147601
50.
50. B. Winter, R. Weber, W. Widdra, M. Dittmar, M. Faubel, and I. V. Hertel, J. Phys. Chem. A 108, 2625 (2004).
http://dx.doi.org/10.1021/jp030263q
51.
51. P. Delahay, Acc. Chem. Res. 15, 40 (1982).
http://dx.doi.org/10.1021/ar00074a002
52.
52. S. Ghosal, J. C. Hemminger, H. Bluhm, B. S. Mun, E. L. D. Hebenstreit, G. Ketteler, D. F. Ogletree, F. G. Requejo, and M. Salmeron, Science 307, 563 (2005).
http://dx.doi.org/10.1126/science.1106525
53.
53. D. J. Tobias and J. C. Hemminger, Science 319, 1197 (2008).
http://dx.doi.org/10.1126/science.1152799
54.
54. C. Calemana, J. S. Hubb, P. J. van Maaren, and D. van der Spoel, Proc. Natl. Acad. Sci. U.S.A. 108, 6838 (2011).
http://dx.doi.org/10.1073/pnas.1017903108
55.
55. M. D. Baer and C. J. Mundy, J. Phys. Chem. Lett. 2, 1088 (2011).
http://dx.doi.org/10.1021/jz200333b
56.
56. I. Watanabe, J. B. Flanagan, and P. Delahay, J. Chem. Phys. 73, 2057 (1980).
http://dx.doi.org/10.1063/1.440427
57.
57.See supplementary material at http://dx.doi.org/10.1063/1.4804621 for Figure S1 and Table SI. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/18/10.1063/1.4804621
Loading
/content/aip/journal/jcp/138/18/10.1063/1.4804621
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/18/10.1063/1.4804621
2013-05-10
2014-07-14

Abstract

We present first principles molecular dynamics simulations of the chloride anion in liquid water performed using gradient-corrected and hybrid density functionals. We show that it is necessary to use hybrid functionals both for the generation of molecular dynamics trajectories and for the calculation of electronic states in order to obtain a qualitatively correct description of the electronic properties of the solution. In particular, it is only with hybrid functionals that the highest occupied molecular orbital of the anion is found above the valence band maximum of water, consistent with photoelectron detachment measurements. Similar results were obtained using many body perturbation theory within the GW approximation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/18/1.4804621.html;jsessionid=6v3kd3nthyno.x-aip-live-03?itemId=/content/aip/journal/jcp/138/18/10.1063/1.4804621&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Electronic structure of the solvated chloride anion from first principles molecular dynamics
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/18/10.1063/1.4804621
10.1063/1.4804621
SEARCH_EXPAND_ITEM