1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Communication: A case where the hard/soft acid/base principle holds regardless of acid/base strength
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/18/10.1063/1.4805083
1.
1.R. G. Pearson, J. Am. Chem. Soc. 85, 3533 (1963).
http://dx.doi.org/10.1021/ja00905a001
2.
2.R. G. Pearson, Science 151, 172 (1966).
http://dx.doi.org/10.1126/science.151.3707.172
3.
3.R. G. Pearson, J. Chem. Educ. 45, 643 (1968).
http://dx.doi.org/10.1021/ed045p643
4.
4.R. G. Pearson, J. Chem. Educ. 45, 581 (1968).
http://dx.doi.org/10.1021/ed045p581
5.
5.R. G. Pearson, Inorg. Chem. 11, 3146 (1972).
http://dx.doi.org/10.1021/ic50118a065
6.
6.R. S. Drago, Inorg. Chem. 12, 2211 (1973).
http://dx.doi.org/10.1021/ic50127a063
7.
7.J. E. Huheey, E. A. Keiter, and R. L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity (HarperCollins, New York, 1993).
8.
8.R. G. Pearson, Inorg. Chim. Acta 240, 93 (1995).
http://dx.doi.org/10.1016/0020-1693(95)04648-8
9.
9.C. Cardenas and P. W. Ayers, “How reliable is the hard/soft acid/base principle? An assessment from numerical simulations of electron transfer energies,” Phys. Chem. Chem. Phys. (to be published).
10.
10.J. L. Gazquez and F. Mendez, J. Phys. Chem. 98, 4591 (1994).
http://dx.doi.org/10.1021/j100068a018
11.
11.F. Mendez and J. L. Gazquez, J. Am. Chem. Soc. 116, 9298 (1994).
http://dx.doi.org/10.1021/ja00099a055
12.
12.J. L. Gazquez, J. Phys. Chem. A 101, 4657 (1997).
http://dx.doi.org/10.1021/jp970643
13.
13.P. W. Ayers, Faraday Discuss. 135, 161 (2007).
http://dx.doi.org/10.1039/b606877d
14.
14.J. S. M. Anderson, J. Melin, and P. W. Ayers, J. Chem. Theory Comput. 3, 358 (2007).
http://dx.doi.org/10.1021/ct600164j
15.
15.J. S. M. Anderson and P. W. Ayers, Phys. Chem. Chem. Phys. 9, 2371 (2007).
http://dx.doi.org/10.1039/b700960g
16.
16.M. Torrent-Sucarrat, F. De Proft, P. Geerlings, and P. W. Ayers, Chem.-Eur. J. 14, 8652 (2008).
http://dx.doi.org/10.1002/chem.200800570
17.
17.M. Torrent-Sucarrat, F. De Proft, P. W. Ayers, and P. Geerlings, Phys. Chem. Chem. Phys. 12, 1072 (2010).
http://dx.doi.org/10.1039/b919471a
18.
18.P. K. Chattaraj, J. Phys. Chem. A 105, 511 (2001).
http://dx.doi.org/10.1021/jp003786w
19.
19.M. Breugst, H. Zipse, J. P. Guthrie, and H. Mayr, Angew. Chem., Int. Ed. 49, 5165 (2010).
http://dx.doi.org/10.1002/anie.201001574
20.
20.A. A. Tishkov, U. Schmidhammer, S. Roth, E. Riedle, and H. Mayr, Angew. Chem., Int. Ed. 44, 4623 (2005).
http://dx.doi.org/10.1002/anie.200501274
21.
21.A. A. Tishkov and H. Mayr, Angew. Chem., Int. Ed. 44, 142 (2004).
http://dx.doi.org/10.1002/anie.200461640
22.
22.M. Breugst and H. Mayr, J. Am. Chem. Soc. 132, 15380 (2010).
http://dx.doi.org/10.1021/ja106962u
23.
23.H. Mayr, M. Breugst, and A. R. Ofial, Angew. Chem., Int. Ed. 50, 6470 (2011).
http://dx.doi.org/10.1002/anie.201007100
24.
24.P. Geerlings, F. De Proft, and W. Langenaeker, Chem. Rev. 103, 1793 (2003).
http://dx.doi.org/10.1021/cr990029p
25.
26.
26.R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).
27.
27.P. W. Ayers, J. S. M. Anderson, and L. J. Bartolotti, Int. J. Quantum Chem. 101, 520 (2005).
http://dx.doi.org/10.1002/qua.20307
28.
28.J. L. Gazquez, J. Mex. Chem. Soc. 52, 3 (2008).
29.
29.J. S. M. Anderson, Y. L. Liu, J. W. Thomson, and P. W. Ayers, J. Mol. Struct.: THEOCHEM 943, 168 (2010).
http://dx.doi.org/10.1016/j.theochem.2009.12.013
30.
30.P. A. Johnson, L. J. Bartolotti, P. W. Ayers, T. Fievez, and P. Geerlings, in Modern Charge Density Analysis, edited by C. Gatti and P. Macchi (Springer, New York, 2012), p. 715.
31.
31.P. W. Ayers, R. G. Parr, and R. G. Pearson, J. Chem. Phys. 124, 194107 (2006).
http://dx.doi.org/10.1063/1.2196882
32.
32.P. K. Chattaraj, H. Lee, and R. G. Parr, J. Am. Chem. Soc. 113, 1855 (1991).
http://dx.doi.org/10.1021/ja00005a073
33.
33.P. W. Ayers, J. Chem. Phys. 122, 141102 (2005).
http://dx.doi.org/10.1063/1.1897374
34.
34.P. K. Chattaraj and P. W. Ayers, J. Chem. Phys. 123, 086101 (2005).
http://dx.doi.org/10.1063/1.2011395
35.
35.P. K. Chattaraj, P. W. Ayers, and J. Melin, Phys. Chem. Chem. Phys. 9, 3853 (2007).
http://dx.doi.org/10.1039/b705742c
36.
36.P. K. Chattaraj, Indian J. Phys. Proc. Indian Assoc. Cultivat. Sci. 81, 871 (2007).
37.
37.P. K. Chattaraj and P. v. R. Schleyer, J. Am. Chem. Soc. 116, 1067 (1994).
http://dx.doi.org/10.1021/ja00082a031
38.
38.P. K. Chattaraj, B. Gomez, E. Chamorro, J. Santos, and P. Fuentealba, J. Phys. Chem. A 105, 8815 (2001).
http://dx.doi.org/10.1021/jp011767w
39.
39.G. K. Patra, S. Hati, and D. Datta, Indian J. Chem., Sect. A: Inorg., Bioinorg., Phys., Theor. Anal. Chem. 38, 1 (1999).
40.
40.J. L. Reed, Inorg. Chem. 47, 5591 (2008).
http://dx.doi.org/10.1021/ic701377n
41.
41.J. L. Reed, Inorg. Chem. 48, 7151 (2009).
http://dx.doi.org/10.1021/ic900368f
42.
42.J. L. Reed, J. Phys. Chem. A 116, 7147 (2012).
http://dx.doi.org/10.1021/jp301812j
43.
43.P. Geerlings, P. W. Ayers, A. Toro-Labbe, P. K. Chattaraj, and F. De Proft, Acc. Chem. Res. 45, 683 (2012).
http://dx.doi.org/10.1021/ar200192t
44.
44.R. G. Parr, P. W. Ayers, and R. F. Nalewajski, J. Phys. Chem. A 109, 3957 (2005).
http://dx.doi.org/10.1021/jp0404596
45.
45.R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, J. Chem. Phys. 68, 3801 (1978).
http://dx.doi.org/10.1063/1.436185
46.
46.R. G. Parr and R. G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983).
http://dx.doi.org/10.1021/ja00364a005
47.
47.G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities (Cambridge University Press, London, 1952).
48.
48.A. Vince, Am. Math. Monthly 97, 319 (1990).
http://dx.doi.org/10.2307/2324517
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/18/10.1063/1.4805083
Loading
/content/aip/journal/jcp/138/18/10.1063/1.4805083
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/18/10.1063/1.4805083
2013-05-14
2014-12-22

Abstract

We show that the hard/soft acid/base principle holds when electron-transfer effects are dominant and the weaker acid and stronger base are harder than the other acidic and basic reagents. In this case the preference of strong acids for strong bases and weak acids for weak bases reinforces the preference of hard acids for hard bases and soft acids for soft bases.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/18/1.4805083.html;jsessionid=7h1uubrc4c8pc.x-aip-live-03?itemId=/content/aip/journal/jcp/138/18/10.1063/1.4805083&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: A case where the hard/soft acid/base principle holds regardless of acid/base strength
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/18/10.1063/1.4805083
10.1063/1.4805083
SEARCH_EXPAND_ITEM