1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Perspective: Nanomotors without moving parts that propel themselves in solution
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/2/10.1063/1.4773981
1.
1. B. Alberts and R. Miake-Lye, Cell 68, 415 (1992).
http://dx.doi.org/10.1016/0092-8674(92)90179-G
2.
2. B. Alberts, Cell 92, 291 (1998).
http://dx.doi.org/10.1016/S0092-8674(00)80922-8
3.
3. C. Mavroidis, A. Dubey, and M. L. Yarmush, Annu. Rev. Biomed. Eng. 6, 363 (2004).
http://dx.doi.org/10.1146/annurev.bioeng.6.040803.140143
4.
4. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular Biology of the Cell, 3rd ed. (Garland Science, 2002),
5.
5. E. M. Purcell, Am. J. Phys. 45, 3 (1977).
http://dx.doi.org/10.1119/1.10903
6.
6. J.-S. Shin and N. A. Pierce, J. Am. Chem. Soc. 126, 10834 (2004).
http://dx.doi.org/10.1021/ja047543j
7.
7. P. Yin, H. Yan, X. G. Daniell, A. J. Turberfield, and J. H. Reif, Angew. Chem. Int. Ed. 43, 4906 (2004).
http://dx.doi.org/10.1002/anie.200460522
8.
8. Y. Tian, Y. He, Y. Chen, P. Yin, and C. Mao, Angew. Chem. Int. Ed. 44, 4355 (2005).
http://dx.doi.org/10.1002/anie.200500703
9.
9. R. Pei, S. K. Taylor, D. Stefanovic, S. Rudchenko, T. E. Mitchell, and M. N. Stojanovic, J. Am. Chem. Soc. 128, 12693 (2006).
http://dx.doi.org/10.1021/ja058394n
10.
10. P. Yin, H. M. T. Choi, C. R. Calvert, and N. A. Pierce, Nature (London) 451, 318 (2008).
http://dx.doi.org/10.1038/nature06451
11.
11. T. Omabegho, R. Sha, and N. C. Seeman, Science 324, 67 (2009).
http://dx.doi.org/10.1126/science.1170336
12.
12. E. H. C. Bromley, N. J. Kuwada, M. J. Zuckermann, R. Donadini, L. Samii, G. A. Blab, G. J. Gemmen, B. J. Lopez, P. M. G. Curmi, N. R. Forde et al., HFSP J. 3, 204 (2009).
http://dx.doi.org/10.2976/1.3111282
13.
13. K. Lund, A. J. Manzo, N. Dabby, N. Michelotti, A. Johnson-Buck, J. Nangreave, S. Taylor, R. Pei, M. N. Stojanovic, and N. G. Walter, Nature (London) 465, 206 (2010).
http://dx.doi.org/10.1038/nature09012
14.
14. R. Ballardini, V. Balzani, A. Credi, M. T. Gandolfi, and M. Venturi, Acc. Chem. Res. 34, 445 (2001).
http://dx.doi.org/10.1021/ar000170g
15.
15. V. Balzani, M. Venturi, and A. Credi, Molecular Devices and Machines: A Journey into the Nano World (Wiley-VCH, Weinheim, 2002).
16.
16. K. Hoki, M. Yamaki, S. Koseki, and Y. Fujimura, J. Chem. Phys. 118, 497 (2003).
http://dx.doi.org/10.1063/1.1526834
17.
17. H. Hess, G. D. Bachand, and V. Vogel, Chem. Eur. J. 10, 2110 (2004).
http://dx.doi.org/10.1002/chem.200305712
18.
18. R. Dreyfus, J. Baudry, M. L. Ropar, M. Fermigier, H. A. Stone, and J. Bibette, Nature (London) 437, 862 (2005).
http://dx.doi.org/10.1038/nature04090
19.
19. S. P. Fletcher, F. Dumur, M. M. Pollard, and B. L. Feringa, Science 310, 80 (2005).
http://dx.doi.org/10.1126/science.1117090
20.
20. D.-H. Qu, Q.-C. Wang, and H. Tian, Angew. Chem. Int. Ed. 44, 5296 (2005).
http://dx.doi.org/10.1002/anie.200501215
21.
21. E. R. Kay, D. A. Leigh, and F. Zerbetto, Angew. Chem. Int. Ed. 46, 72 (2007).
http://dx.doi.org/10.1002/anie.200504313
22.
22. V. Balzani, A. Credi, and M. Venturi, ChemPhysChem 9, 202 (2008).
http://dx.doi.org/10.1002/cphc.200700528
23.
23. H. A. Zambrano, J. H. Walther, and R. L. Jaffe, J. Chem. Phys. 131, 241104 (2009).
http://dx.doi.org/10.1063/1.3281642
24.
24. W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St. Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, J. Am. Chem. Soc. 126, 13424 (2004).
http://dx.doi.org/10.1021/ja047697z
25.
25. S. Fournier-Bidoz, A. C. Arsenault, I. Manners, and G. A. Ozin, Chem. Commun. 2005, 441.
http://dx.doi.org/10.1039/b414896g
26.
26. W. F. Paxton, S. Sundararajan, T. E. Mallouk, and A. Sen, Angew. Chem. Int. Ed. 45, 5420 (2006).
http://dx.doi.org/10.1002/anie.200600060
27.
27. G. A. Ozin, I. Manners, S. Fournier-Bidoz, and A. Arsenault, Adv. Mater. 17, 3011 (2005).
http://dx.doi.org/10.1002/adma.200501767
28.
28. Y. Wang, R. M. Hernandez, D. J. Bartlett Jr., J. M. Bingham, T. R. Kline, A. Sen, and T. E. Mallouk, Langmuir 22, 10451 (2006).
http://dx.doi.org/10.1021/la0615950
29.
29. R. Laocharoensuk, J. Burdick, and J. Wang, ACS Nano 2, 1069 (2008).
http://dx.doi.org/10.1021/nn800154g
30.
30. J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.048102
31.
31. H. Ke, S. Ye, R. L. Carroll, and K. Showalter, J. Phys. Chem. A 114, 5462 (2010).
http://dx.doi.org/10.1021/jp101193u
32.
32. G. Rückner and R. Kapral, Phys. Rev. Lett. 98, 150603 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.150603
33.
33. L. F. Valadares, Y.-G. Tao, N. S. Zacharia, V. Kitaev, F. Galembeck, R. Kapral, and G. A. Ozin, Small 6, 565 (2010).
http://dx.doi.org/10.1002/smll.200901976
34.
34. S. S. Dukhin and B. V. Derjaguin, Surface and Colloid Science, edited by E. Matijevic (Wiley, 1974), Vol. 7.
35.
35. J. L. Anderson, M. E. Lowell, and D. C. Prieve, J. Fluid Mech. 117, 107 (1982).
http://dx.doi.org/10.1017/S0022112082001542
36.
36. J. L. Anderson and D. C. Prieve, Sep. Purif. Rev. 13, 67 (1984).
http://dx.doi.org/10.1080/03602548408068407
37.
37. J. L. Anderson, Ann. Rev. Fluid Mech. 21, 61 (1989).
http://dx.doi.org/10.1146/annurev.fl.21.010189.000425
38.
38. J. L. Anderson and D. C. Prieve, Langmuir 7, 403 (1991).
http://dx.doi.org/10.1021/la00050a035
39.
39. F. Jülicher and J. Prost, Eur. Phys. J. 29, 27 (2009).
http://dx.doi.org/10.1140/epje/i2008-10446-8
40.
40. X.-C. Luu, J.-P. Hsu, and S. Tseng, J. Chem. Phys. 134, 064708 (2011).
http://dx.doi.org/10.1063/1.3548654
41.
41. F. A. Morrison, J. Colloid Interface Sci. 34, 210 (1970).
http://dx.doi.org/10.1016/0021-9797(70)90171-2
42.
42. J. L. Anderson, Ann. N. Y. Acad. Sci. 469, 166 (1986).
http://dx.doi.org/10.1111/j.1749-6632.1986.tb26495.x
43.
43. P. Mitchell, Proc. R. Phys. Soc. (Edinburgh) 25, 32 (1956).
44.
44. P. Mitchell, FEBS Lett. 28, 1 (1972).
http://dx.doi.org/10.1016/0014-5793(72)80661-6
45.
45. P. E. Lammert, J. Prost, and R. Bruinsma, J. Theor. Biol. 178, 387 (1996).
http://dx.doi.org/10.1006/jtbi.1996.0035
46.
46.We shall often use the term nanomotor to emphasize the fact that we are considering small motors but the motors of interest may also have dimensions in the micron-scale range.
47.
47. R. Golestanian, T. B. Liverpool, and A. Ajdari, Phys. Rev. Lett. 94, 220801 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.220801
48.
48. R. Golestanian, T. B. Liverpool, and A. Ajdari, New J. Phys. 9, 126 (2007).
http://dx.doi.org/10.1088/1367-2630/9/5/126
49.
49. M. N. Popescu, S. Dietrich, and G. Oshanin, J. Chem. Phys. 130, 194702 (2009).
http://dx.doi.org/10.1063/1.3133239
50.
50. M. N. Popescu, S. Dietrich, M. Tasinkevych, and J. Ralston, Eur. Phys. J. E 31, 351 (2010).
http://dx.doi.org/10.1140/epje/i2010-10593-3
51.
51. B. Sabass and U. Seifert, J. Chem. Phys. 136, 064508 (2012).
http://dx.doi.org/10.1063/1.3681143
52.
52.For a discussion of propulsion using different reaction mechanisms, see P. de Buyl and R. Kapral, “Phoretic self-propulsion: A mesoscopic description of reaction dynamics that powers motion,” Nanoscale (published online).
http://dx.doi.org/10.1039/C2NR33711H
53.
53.The chemical potential gradient that results from this reaction can give rise to a slip velocity (see Ref. 39).
54.
54.For the derivation of a similar formula for a different mechanism involving the decomposition of hydrogen peroxide, see S. Ebbens, M.-H. Tu, J. R. Howse and R. Golestanian, Phys. Rev. E 85, 020401 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.020401
55.
55. F. C. Collins and G. E. Kimball, J. Colloid Sci. 4, 425 (1949).
http://dx.doi.org/10.1016/0095-8522(49)90023-9
56.
56. Y.-G. Tao and R. Kapral, J. Chem. Phys. 128, 164518 (2008).
http://dx.doi.org/10.1063/1.2908078
57.
57. A. Malevanets and R. Kapral, J. Chem. Phys. 110, 8605 (1999).
http://dx.doi.org/10.1063/1.478857
58.
58. A. Malevanets and R. Kapral, J. Chem. Phys. 112, 7260 (2000).
http://dx.doi.org/10.1063/1.481289
59.
59. M. Yang and M. Ripoll, Phys. Rev. E 84, 061401 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.061401
60.
60. R. Liu and A. Sen, J. Am. Chem. Soc. 133, 20064 (2011).
http://dx.doi.org/10.1021/ja2082735
61.
61. U. K. Demirok, R. Laocharoensuk, K. M. Manesh, and J. Wang, Angew. Chem. Int. Ed. 47, 9349 (2008).
http://dx.doi.org/10.1002/anie.200803841
62.
62. N. S. Zacharia, Z. S. Sadeq, and G. A. Ozin, Chem. Commun. 39, 5856 (2009).
http://dx.doi.org/10.1039/b911561g
63.
63. M. C. Fair and J. L. Anderson, J. Colloid Interface Sci. 127, 388 (1989).
http://dx.doi.org/10.1016/0021-9797(89)90045-3
64.
64. W. F. Paxton, A. Sen, and T. E. Mallouk, Chem. Eur. J. 11, 6462 (2005).
http://dx.doi.org/10.1002/chem.200500167
65.
65. B. Sabass and U. Seifert, J. Chem. Phys. 136, 214507 (2012).
http://dx.doi.org/10.1063/1.4719538
66.
66. R. F. Ismagilov, A. Schwartz, N. Bowden, and G. M. Whitesides, Angew. Chem. Int. Ed. 41, 652 (2002).
http://dx.doi.org/10.1002/1521-3773(20020215)41:4<652::AID-ANIE652>3.0.CO;2-U
67.
67. W. Gao, S. Sattayasamitsathit, J. Orozo, and J. Wang, J. Am. Chem. Soc. 133, 11862 (2011).
http://dx.doi.org/10.1021/ja203773g
68.
68. J. G. Gibbs and Y.-P. Zhao, Appl. Phys. Lett. 94, 163104 (2009).
http://dx.doi.org/10.1063/1.3122346
69.
69. R. A. Pavlick, S. Sengupta, T. McFadden, H. Zhang, and A. Sen, Angew. Chem. Int. Ed. 50, 9374 (2011).
http://dx.doi.org/10.1002/anie.201103565
70.
70. T. H. Hsieh and H. J. Keh, J. Chem. Phys. 136, 174702 (2012).
http://dx.doi.org/10.1063/1.4706516
71.
71. O. S. Pak, W. Gao, J. Wang, and E. Lauga, Soft Matter 7, 8169 (2011).
http://dx.doi.org/10.1039/c1sm05503h
72.
72. T. Mirkovic, M. L. Foo, A. C. Arsenault, S. Fournier-Bidoz, N. S. Zacharia, and G. A. Ozin, Nat. Nanotechnol. 2, 565 (2007).
http://dx.doi.org/10.1038/nnano.2007.250
73.
73. Y.-G. Tao and R. Kapral, ChemPhysChem 10, 770 (2009).
http://dx.doi.org/10.1002/cphc.200800829
74.
74. Y. Shi, L. Huang, and D. W. Brenner, J. Chem. Phys. 131, 014705 (2009).
http://dx.doi.org/10.1063/1.3153919
75.
75. C. Valeriani, R. J. Allen, and D. Marenduzzo, J. Chem. Phys. 132, 204904 (2010).
http://dx.doi.org/10.1063/1.3428663
76.
76. D. A. Wilson, R. J. M. Nolte, and J. C. M. van Hest, Nat. Chem. 4, 268 (2012).
http://dx.doi.org/10.1038/nchem.1281
77.
77. Y. Sumino, N. Magome, T. Hamada, and K. Yoshikawa, Phys. Rev. Lett. 94, 068301 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.068301
78.
78. T. Toyota, N. Maru, M. M. Hanczyc, T. Ikegami, and T. Sugawara, J. Am. Chem. Soc. 131, 50125013 (2009).
http://dx.doi.org/10.1021/ja806689p
79.
79. T. Ohta and T. Ohkuma, Phys. Rev. Lett. 102, 154101 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.154101
80.
80. F. Takabatake, N. Magome, M. Ichikawa, and K. Yoshikawa, J. Chem. Phys. 134, 114704 (2011).
http://dx.doi.org/10.1063/1.3567096
81.
81. S. Yabunaka, T. Ohta, and N. Yoshinaga, J. Chem. Phys. 136, 074904 (2012).
http://dx.doi.org/10.1063/1.3685805
82.
82. A. Mikhailov and D. Meinköhn, Lect. Notes Phys. 484, 334 (1997).
http://dx.doi.org/10.1007/BFb0105592
83.
83. P. de Buyl, A. Mikhailov, and R. Kapral, “Reactive fluctuations and self-propulsion through symmetry breaking” (unpublished).
84.
84. P. C. Whitford, S. Gosavi, and J. N. Onuchic, J. Biol. Chem. 283, 2042 (2008).
http://dx.doi.org/10.1074/jbc.M707632200
85.
85. C. Echeverria, Y. Togashi, A. S. Mikhailov, and R. Kapral, Phys. Chem. Chem. Phys. 13, 10527 (2011).
http://dx.doi.org/10.1039/c1cp00003a
86.
86. R. Golestanian, Phys. Rev. Lett. 102, 188305 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.188305
87.
87.Velocity correlations in the absence of self-propulsion also possess long-time algebraic tails due to coupling to the collective viscous modes of the fluid.
88.
88.Using the fact that the rate constant can be written approximately as , one may deduce that the diffusion controlled limit will be applicable until motors with Angstrom-scale dimensions are considered; however, the crossover from diffusion control to reaction control depends on the precise value of which, in turn, depends of the details of the reactive events and it could occur for larger Rm.
89.
89.It is possible to study the dynamics of even smaller Angstrom-scale motors, at least computationally using molecular dynamics [P. Colberg and R. Kapral, unpublished].
90.
90. H. S. Muddana, S. Sengupta, T. E. Mallouk, A. Sen, and P. J. Butler, J. Am. Chem. Soc. 132, 2110 (2010).
http://dx.doi.org/10.1021/ja908773a
91.
91. D. Li, D. Fan, and Z. Wang, J. Chem. Phys. 126, 245105 (2007).
http://dx.doi.org/10.1063/1.2746236
92.
92. O. B. Usta, M. Nayhouse, A. Alexeev, and A. C. Balazs, J. Chem. Phys. 128, 235102 (2008).
http://dx.doi.org/10.1063/1.2940202
93.
93. R. P. Feynman, Caltech Eng. Sci. 23, 22 (1960).
94.
94. N. Mano and A. Heller, J. Am. Chem. Soc. 127, 11574 (2005).
http://dx.doi.org/10.1021/ja053937e
95.
95. S. Thakur and R. Kapral, J. Chem. Phys. 135, 024509 (2011).
http://dx.doi.org/10.1063/1.3607408
96.
96. R. C. Desai and R. Kapral, Dynamics of Self-Organized and Self-Assembled Structures (Cambridge University Press, Cambridge, 2009).
97.
97. S. Thakur, J.-X. Chen, and R. Kapral, Angew. Chem. Int. Ed. 50, 10165 (2011).
http://dx.doi.org/10.1002/anie.201100111
98.
98. F. Jülicher, A. Ajdari, and J. Prost, Rev. Mod. Phys. 69, 1269 (1997).
http://dx.doi.org/10.1103/RevModPhys.69.1269
99.
99. H. Wang and G. Oster, Europhys. Lett. 57, 134 (2002).
http://dx.doi.org/10.1209/epl/i2002-00385-6
100.
100. Y.-G. Tao and R. Kapral, J. Chem. Phys. 131, 024113 (2009).
http://dx.doi.org/10.1063/1.3174929
101.
101. R. S. MacKay and D. J. C. MacKay, Physica D 216, 220234 (2006).
http://dx.doi.org/10.1016/j.physd.2006.02.006
102.
102. G. Steinberg, Curr. Opin. Microbiol. 14, 660 (2011).
http://dx.doi.org/10.1016/j.mib.2011.09.013
103.
103. G. Mino, T. E. Mallouk, T. Darnige, M. Hoyos, J. Dauchet, J. Dunstan, R. Soto, Y. Wang, A. Rousselet, and E. Clement, Phys. Rev. Lett. 106, 048102 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.048102
104.
104. M. Ibele, T. E. Mallouk, and A. Sen, Angew. Chem. Int. Ed. 48, 3308 (2009).
http://dx.doi.org/10.1002/anie.200804704
105.
105. J. G. Gibbs and Y. Zhao, Small 6, 1656 (2010).
http://dx.doi.org/10.1002/smll.201000415
106.
106. S. Thakur and R. Kapral, J. Chem. Phys. 133, 204505 (2010).
http://dx.doi.org/10.1063/1.3506859
107.
107. S. Ebbens, R. A. L. Jones, A. J. Ryan, R. Golestanian, and J. R. Howse, Phys. Rev. E 82, 015304 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.015304
108.
108. Y. Wang, S. to Fei, Y.-M. Byun, P. E. Lammert, V. H. Crespi, A. Sen, and T. E. Mallouk, J. Am. Chem. Soc. 131, 9926 (2009).
http://dx.doi.org/10.1021/ja904827j
109.
109. I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert, and L. Bocquet, Phys. Rev. Lett. 108, 268303 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.268303
110.
110. S. Thakur and R. Kapral, Phys. Rev. E 85, 026121 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.026121
111.
111. I. Llopis and I. Pagonabarraga, Europhys. Lett. 75, 999 (2006).
http://dx.doi.org/10.1209/epl/i2006-10201-y
112.
112. D. J. Earl, C. M. Pooley, J. F. Ryder, I. Bredberg, and J. M. Yeomans, J. Chem. Phys. 126, 064703 (2007).
http://dx.doi.org/10.1063/1.2434160
113.
113. R. Golestanian, J. M. Yeomans, and N. Uchida, Soft Matter 7, 30743082 (2011).
http://dx.doi.org/10.1039/c0sm01121e
114.
114. Y. Hatwalne, S. Ramaswamy, M. Rao, and R. A. Simha, Phys. Rev. Lett. 92, 118101 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.118101
115.
115. F. Ginelli, F. Peruani, M. Bär, and H. Chaté, Phys. Rev. Lett. 104, 184502 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.184502
116.
116. J. P. Hernandez-Ortiz, C. G. Stoltz, and M. D. Graham, Phys. Rev. Lett. 95, 204501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.204501
117.
117. J. Bialke, T. Speck, and H. Löwen, Phys. Rev. Lett. 108, 168301 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.168301
118.
118. I. S. Aranson and L. S. Tsimring, Rev. Mod. Phys. 78, 641 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.641
119.
119. M. E. Cates, Rep. Prog. Phys. 75, 042601 (2012).
http://dx.doi.org/10.1088/0034-4885/75/4/042601
120.
120. F. Peruani, A. Deutsch, and M. Bär, Phys. Rev. E 74, 030904R (2006).
http://dx.doi.org/10.1103/PhysRevE.74.030904
121.
121. W. Ebeling, Acta Phys. Pol. B 38, 1657 (2007).
122.
122. S. Thutupalli1, R. Seemann, and S. Herminghaus, New J. Phys. 13, 073021 (2011).
http://dx.doi.org/10.1088/1367-2630/13/7/073021
123.
123. A. Pototsky and H. Stark, Europhys. Lett. 98, 50004 (2012).
http://dx.doi.org/10.1209/0295-5075/98/50004
124.
124. T. E. Mallouk and A. Sen, Sci. Am. 300, 72 (2009).
http://dx.doi.org/10.1038/scientificamerican0509-72
125.
125. J. Wang, ACS Nano 3, 4 (2009).
http://dx.doi.org/10.1021/nn800829k
126.
126. Y. Hong, D. Velegol, N. Chaturvedi, and A. Sen, Phys. Chem. Chem. Phys. 12, 1423 (2010).
http://dx.doi.org/10.1039/b917741h
127.
127. T. Mirkovic, N. S. Zacharia, G. D. Scholes, and G. A. Ozin, ACS Nano 4, 1782 (2010).
http://dx.doi.org/10.1021/nn100669h
128.
128. T. Mirkovic, N. S. Zacharia, G. D. Scholes, and G. A. Ozin, Small 6, 159 (2010).
http://dx.doi.org/10.1002/smll.200901340
129.
129. M. Pumera, Nanoscale 2, 1643 (2010).
http://dx.doi.org/10.1039/c0nr00287a
130.
130. J. G. Gibbs and Y. Zhao, Proc. SPIE 8058, 80580O (2011).
http://dx.doi.org/10.1117/12.887526
131.
131. J. Burdick, R. Laocharoensuk, P. M. Wheat, J. D. Posner, and Y. Wang, J. Am. Chem. Soc. 130, 8164 (2008).
http://dx.doi.org/10.1021/ja803529u
132.
132. J. Simmchen, A. Baeza, D. Ruiz, M. J. Esplandiu, and M. Vallet-Regi, Small 8, 2053 (2012).
http://dx.doi.org/10.1002/smll.201101593
133.
133. Y.-G. Tao and R. Kapral, Soft Matter 6, 756 (2010).
http://dx.doi.org/10.1039/b918906h
134.
134. S. Sundararajan, S. Sengupta, M. E. Ibele, and A. Sen, Small 6, 1479 (2010).
http://dx.doi.org/10.1002/smll.201000227
135.
135. D. Kagan, P. Calvo-Marzal, S. Balasubramanian, S. S. K. M. Manesh, G.-U. Flechsig, and J. Wang, J. Am. Chem. Soc. 131, 12082 (2009).
http://dx.doi.org/10.1021/ja905142q
136.
136. J.-M. Lehn, Chem. Soc. Rev. 36, 151 (2007).
http://dx.doi.org/10.1039/b616752g
137.
137. J. Dursi, L. Groer, D. Gruner, C. Loken, S. Northrup, S. Ross, R. Sobie, and C. Yip, J. Phys.: Conf. Ser. 256, 011001 (2010).
http://dx.doi.org/10.1088/1742-6596/256/1/011001
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/2/10.1063/1.4773981
Loading
/content/aip/journal/jcp/138/2/10.1063/1.4773981
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/2/10.1063/1.4773981
2013-01-08
2014-11-25

Abstract

Self-propelled nanomotors use chemical energy to produce directed motion. Like many molecular motors they suffer strong perturbations from the environment in which they move as a result of thermal fluctuations and do not rely on inertia for their propulsion. Such tiny motors are the subject of considerable research because of their potential applications, and a variety of synthetic motors have been made and are being studied for this purpose. Chemically powered self-propelled nanomotors without moving parts that rely on asymmetric chemical reactions to effect directed motion are the focus of this article. The mechanisms they use for propulsion, how size and fuel sources influence their motion, how they cope with strong molecular fluctuations, and how they behave collectively are described. The practical applications of such nanomotors are largely unrealized and the subject of speculation. Since molecular motors are ubiquitous in biology and perform a myriad of complex tasks, the hope is that synthetic motors might be able to perform analogous tasks. They may have the potential to change our perspective on how chemical dynamics takes place in complex systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/2/1.4773981.html;jsessionid=3w823ex65q48.x-aip-live-02?itemId=/content/aip/journal/jcp/138/2/10.1063/1.4773981&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Perspective: Nanomotors without moving parts that propel themselves in solution
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/2/10.1063/1.4773981
10.1063/1.4773981
SEARCH_EXPAND_ITEM