1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Implementation of quantum logic gates using polar molecules in pendular states
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/2/10.1063/1.4774058
1.
1. A. Micheli, G. K. Brennen, and P. Zoller, Nat. Phys. 2, 341 (2006).
http://dx.doi.org/10.1038/nphys287
2.
2. K. K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe'er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, Science 322, 231 (2008).
http://dx.doi.org/10.1126/science.1163861
3.
3. S. Kotochigova and E. Tiesinga, Phys. Rev. A 73, 041405 (2006).
http://dx.doi.org/10.1103/PhysRevA.73.041405
4.
4. J. Deiglmayr, A. Grochola, M. Repp, K. Moertlbauer, C. Glueck, J. Lange, O. Dulieu, R. Wester, and M. Weidemueller, Phys. Rev. Lett. 101, 133004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.133004
5.
5. D. DeMille, Phys. Rev. Lett. 88, 067901 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.067901
6.
6. L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, New J. Phys. 11, 055049 (2009).
http://dx.doi.org/10.1088/1367-2630/11/5/055049
7.
7. A. Daskin and S. Kais, Mol. Phys. 109, 761 (2011).
http://dx.doi.org/10.1080/00268976.2011.552444
8.
8. J. Zhu, Z. Huang, and S. Kais, Mol. Phys. 107, 2015 (2009).
http://dx.doi.org/10.1080/00268970903117126
9.
9. A. S. Sorensen, C. H. van der Wal, L. I. Childress, and M. D. Lukin, Phys. Rev. Lett. 92, 063601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.063601
10.
10. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature (London) 431, 162 (2004).
http://dx.doi.org/10.1038/nature02851
11.
11. B. Friedrich and J. M. Doylei, ChemPhysChem 10, 604 (2009).
http://dx.doi.org/10.1002/cphc.200800577
12.
12. C. Lee and E. A. Ostrovskaya, Phys. Rev. A 72, 062321 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.062321
13.
13. S. F. Yelin, K. Kirby, and R. Cote, Phys. Rev. A 74, 050301 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.050301
14.
14. Q. Wei, S. Kais, B. Friedrich, and D. Herschbach, J. Chem. Phys. 134, 124107 (2011).
http://dx.doi.org/10.1063/1.3567486
15.
15. Q. Wei, S. Kais, B. Friedrich, and D. Herschbach, J. Chem. Phys. 135, 154102 (2011).
http://dx.doi.org/10.1063/1.3649949
16.
16. K. Sundermann and R. de Vivie-Riedle, J. Chem. Phys. 110, 1896 (1999).
http://dx.doi.org/10.1063/1.477856
17.
17. C. M. Tesch and R. de Vivie-Riedle, J. Chem. Phys. 121, 12158 (2004).
http://dx.doi.org/10.1063/1.1818131
18.
18. B. M. R. Korff, U. Troppmann, K. L. Kompa, and R. de Vivie-Riedle, J. Chem. Phys. 123, 244509 (2005).
http://dx.doi.org/10.1063/1.2141615
19.
19. R. de Vivie-Riedle, Abstr. Pap. – Am. Chem. Soc. 241, 121 (2011).
20.
20. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Science 288, 824 (2000).
http://dx.doi.org/10.1126/science.288.5467.824
21.
21. C. Brif, R. Chakrabarti, and H. Rabitz, New J. Phys. 12, 075008 (2010).
http://dx.doi.org/10.1088/1367-2630/12/7/075008
22.
22. K. Mishima and K. Yamashita, J. Chem. Phys. 131, 014109 (2009).
http://dx.doi.org/10.1063/1.3159002
23.
23. K. Mishima and K. Yamashita, Chem. Phys. 361, 106 (2009).
http://dx.doi.org/10.1016/j.chemphys.2009.05.014
24.
24. K. Mishima and K. Yamashita, Chem. Phys. 367, 63 (2010).
http://dx.doi.org/10.1016/j.chemphys.2009.11.007
25.
25. K. Mishima and K. Yamashita, Chem. Phys. 379, 13 (2011).
http://dx.doi.org/10.1016/j.chemphys.2010.10.003
26.
26. L. Bomble, P. Pellegrini, P. Ghesquiere, and M. Desouter-Lecomte, Phys. Rev. A 82, 062323 (2010).
http://dx.doi.org/10.1103/PhysRevA.82.062323
27.
27. D. Sugny, L. Bomble, T. Ribeyre, O. Dulieu, and M. Desouter-Lecomte, Phys. Rev. A 80, 042325 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.042325
28.
28. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2011).
29.
29. J. N. Byrd, J. A. Montgomery, and R. Côté, Phys. Rev. Lett. 109, 083003 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.083003
30.
30. J. H. Nielsen, H. Stapelfeldt, J. Küpper, B. Friedrich, J. J. Omiste, and R. González-Férez, Phys. Rev. Lett. 108, 193001 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.193001
31.
31. J. P. Palao and R. Kosloff, Phys. Rev. A 68, 062308 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.062308
32.
32. K. Shioya, K. Mishima, and K. Yamashita, Mol. Phys. 105, 1283 (2007).
http://dx.doi.org/10.1080/00268970701439573
33.
33. M. Kaufman, L. Wharton, and W. Klemperer, J. Chem. Phys. 43, 943 (1965).
http://dx.doi.org/10.1063/1.1696875
34.
34. R. R. Zaari and A. Brown, J. Chem. Phys. 137, 104306 (2012).
http://dx.doi.org/10.1063/1.4747703
35.
35. Q. Wei, S. Kais, and Y. P. Chen, J. Chem. Phys. 132, 121104 (2010).
http://dx.doi.org/10.1063/1.3366522
36.
36. D. E. Chang, J. D. Thompson, H. Park, V. Vuletic, A. S. Zibrov, P. Zoller, and M. D. Lukin, Phys. Rev. Lett. 103, 123004 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.123004
37.
37. B. Murphy and L. V. Hau, Phys. Rev. Lett. 102, 033003 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.033003
38.
38. S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, Opt. Express 15, 8619 (2007).
http://dx.doi.org/10.1364/OE.15.008619
39.
39. S. F. Yelin, D. DeMille, and R. Cote, “Quantum information processing with ultracold polar molecules,” in Cold Molecules Theory, Experiment, Applications, edited by R. V. Krems, W. C. Stwalley, and B. Friedrich (Taylor & Francis, London, 2009), p. 629.
40.
40. W. S. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998).
http://dx.doi.org/10.1063/1.475576
41.
41. R. R. Zaari and A. Brown, J. Chem. Phys. 135, 044317 (2011).
http://dx.doi.org/10.1063/1.3617248
42.
42. P. C. de Groot, J. Lisenfeld, R. N. Schouten, S. Ashhab, A. Lupascu, C. J. P. M. Harmans, and J. E. Mooij, Nat. Phys. 6, 763 (2010).
http://dx.doi.org/10.1038/nphys1733
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/2/10.1063/1.4774058
Loading
/content/aip/journal/jcp/138/2/10.1063/1.4774058
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/2/10.1063/1.4774058
2013-01-10
2014-09-02

Abstract

We present a systematic approach to implementation of basic quantum logic gates operating on polar molecules in pendular states as qubits for a quantum computer. A static electric field prevents quenching of the dipole moments by rotation, thereby creating the pendular states; also, the field gradient enables distinguishing among qubit sites. Multi-target optimal control theory is used as a means of optimizing the initial-to-target transition probability via a laser field. We give detailed calculations for the SrO molecule, a favorite candidate for proposed quantum computers. Our simulation results indicate that NOT, Hadamard and CNOT gates can be realized with high fidelity, as high as 0.985, for such pendular qubit states.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/2/1.4774058.html;jsessionid=6t5c0s2tuutcj.x-aip-live-06?itemId=/content/aip/journal/jcp/138/2/10.1063/1.4774058&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Implementation of quantum logic gates using polar molecules in pendular states
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/2/10.1063/1.4774058
10.1063/1.4774058
SEARCH_EXPAND_ITEM