1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Thermionic current densities from first principles
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/20/10.1063/1.4805002
1.
1. J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, Nature Mater. 9, 762 (2010).
http://dx.doi.org/10.1038/nmat2814
2.
2. K. L. Jensen and M. Cahay, Appl. Phys. Lett. 88, 154105 (2006);
http://dx.doi.org/10.1063/1.2193776
2.K. L. Jensen, J. Vac. Sci. Technol. B 21, 1528 (2003);
http://dx.doi.org/10.1116/1.1573664
2.R. H. Fowler and L. Nordheim, Proc. R. Soc. London, Ser. A 119, 173 (1928).
http://dx.doi.org/10.1098/rspa.1928.0091
3.
3. C. Herring and M. H. Nichols, Rev. Mod. Phys. 21, 185 (1949).
http://dx.doi.org/10.1103/RevModPhys.21.185
4.
4. A. Modinos, Surf. Sci. 115, 469 (1982).
http://dx.doi.org/10.1016/0039-6028(82)90382-X
5.
5. R. Ramprasad, L. R. C. Fonseca, and P. von Allmen, Phys. Rev. B 62, 5216 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.5216
6.
6. Y. Gohda, Y. Nakamura, K. Watanabe, and S. Watanabe, Phys. Rev. Lett. 85, 1750 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1750
7.
7. S. Huang, T. Leung, and C. Chan, Solid State Commun. 137, 498 (2006).
http://dx.doi.org/10.1016/j.ssc.2005.12.029
8.
8. T. D. Musho, W. F. Paxton, J. L. Davidson, and D. G. Walker, J. Vac. Sci. Technol. B 31, 021401 (2013).
http://dx.doi.org/10.1116/1.4792522
9.
9. H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, 2nd ed. (Springer, Berlin, 2008).
10.
10. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995).
11.
11. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
12.
12. J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.245407
13.
13. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165401
14.
14. M. B. Nardelli, Phys. Rev. B 60, 7828 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.7828
15.
15. M. P. Lopez Sancho, J. M. Lopez Sancho, and J. Rubio, J. Phys. F: Met. Phys. 14, 1205 (1984);
http://dx.doi.org/10.1088/0305-4608/14/5/016
15.M. P. Lopez Sancho, J. M. Lopez Sancho, and J. Rubio, J. Phys. F: Met. Phys. 15, 851 (1985).
http://dx.doi.org/10.1088/0305-4608/15/4/009
16.
16. N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.12847
17.
17. K. S. Thygesen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. Lett. 94, 026405 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.026405
18.
18. R. Landauer, IBM J. Res. Dev. 1, 223 (1957);
http://dx.doi.org/10.1147/rd.13.0223
18.R. Landauer, Philos. Mag. 21, 863 (1970).
http://dx.doi.org/10.1080/14786437008238472
19.
19. M. Büttiker, Phys. Rev. B 33, 3020 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.3020
20.
20. B. Hammer, L. B. Hansen, and J. K. Nørskov, Phys. Rev. B 59, 7413 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.7413
21.
21. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7892
22.
22. S. R. Bahn and K. W. Jacobsen, Comput. Sci. Eng. 4, 56 (2002).
http://dx.doi.org/10.1109/5992.998641
23.
23. L. Swanson and D. McNeely, Surf. Sci. 83, 11 (1979).
http://dx.doi.org/10.1016/0039-6028(79)90477-1
24.
24. M. H. Nichols, Phys. Rev. 57, 297 (1940).
http://dx.doi.org/10.1103/PhysRev.57.297
25.
25. V. Vlahos, J. H. Booske, and D. Morgan, Phys. Rev. B 81, 054207 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.054207
26.
26. V. Craciun and D. Craciun, Appl. Surf. Sci. 247, 384 (2005).
http://dx.doi.org/10.1016/j.apsusc.2005.01.071
27.
27. F. C. Nix and D. MacNair, Phys. Rev. 61, 74 (1942).
http://dx.doi.org/10.1103/PhysRev.61.74
28.
28. M. Futamoto, M. Nakazawa, K. Usami, S. Hosoki, and U. Kawabe, J. Appl. Phys. 51, 3869 (1980).
http://dx.doi.org/10.1063/1.328132
29.
29. R. Nishitani, M. Aono, T. Tanaka, C. Oshima, S. Kawai, H. Iwasaki, and S. Nakamura, Surf. Sci. 93, 535 (1980).
http://dx.doi.org/10.1016/0039-6028(80)90281-2
30.
30. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
31.
31. R. Monnier and B. Delley, Phys. Rev. B 70, 193403 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.193403
32.
32. W. P. Davey, Phys. Rev. 26, 736 (1925).
http://dx.doi.org/10.1103/PhysRev.26.736
33.
33. S. H. Chou, J. Voss, I. Bargatin, A. Vojvodic, R. T. Howe, and F. Abild-Pedersen, J. Phys.: Condens. Matter 24, 445007 (2012).
http://dx.doi.org/10.1088/0953-8984/24/44/445007
34.
34. D. Wright, in Proceedings of the IEE—Part III: Radio and Communication Engineering (IEE-Inst. Elec. Eng., Hertford, 1953), Vol. 100, p. 125.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/20/10.1063/1.4805002
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Scheme of supercells employed in the DFT calculations using the example of W(110): bulk lead (a) and surface slab (b). W atoms are depicted by blue spheres. The purple (dark) volume corresponds to the metallic lead, the green (light) volume to the scattering region. The atoms in the unshaded part of the slab supercell serve as a decoupling region from the adjacent vacuum layer.

Image of FIG. 2.

Click to view

FIG. 2.

Richardson-Dushman plot of thermionic emission from LaB(100). Experimental data from Ref. (▼) and Ref. (■). The solid lines show fits of DFT results to Eq. (13) based on the PBE (⋄), RPBE (▲), and LDA (•) exchange-correlation functionals, respectively.

Image of FIG. 3.

Click to view

FIG. 3.

Richardson-Dushman plot of thermionic emission from a close-packed tungsten surface with experimental data (•) from Ref. and DFT results (■) based on the RPBE functional.

Image of FIG. 4.

Click to view

FIG. 4.

Calculated thermionic current densities for cesiated W(110) based on the RPBE functional. The red (solid) line shows a fit of the DFT data to the Richardson-Dushman equation for monolayer Cs-coverage, the blue (dashed) line for (near optimal) 0.69 monolayer coverage.

Image of FIG. 5.

Click to view

FIG. 5.

Brillouin zone-resolved thermionic emission from clean (a) and cesiated (0.69 ML) W(110) (b) at = 0.17 eV obtained from RPBE calculations. The Brillouin zone of the cesiated system is smaller due to the 3×2 W(110) surface area.

Loading

Article metrics loading...

/content/aip/journal/jcp/138/20/10.1063/1.4805002
2013-05-22
2014-04-17

Abstract

We present a density functional theory-based method for calculating thermionic emission currents from a cathode into vacuum using a non-equilibrium Green's function approach. It does not require semi-classical approximations or crude simplifications of the electronic structure used in previous methods and thus provides quantitative predictions of thermionic emission for adsorbate-coated surfaces. The obtained results match well with experimental measurements of temperature-dependent current densities. Our approach can thus enable computational design of composite electrode materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/20/1.4805002.html;jsessionid=7j0n26obhtj7.x-aip-live-03?itemId=/content/aip/journal/jcp/138/20/10.1063/1.4805002&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Thermionic current densities from first principles
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/20/10.1063/1.4805002
10.1063/1.4805002
SEARCH_EXPAND_ITEM