1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
A microscopic picture of surface charge trapping in semiconductor nanocrystals
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/20/10.1063/1.4807054
1.
1. C. Galland, Y. Ghosh, A. Steinbruck, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, Nature (London) 479, 203 (2011).
http://dx.doi.org/10.1038/nature10569
2.
2. S. Rosen, O. Schwartz, and D. Oron, Phys. Rev. Lett. 104, 157404 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.157404
3.
3. P. Kambhampati, Acc. Chem. Res. 44, 1 (2011).
http://dx.doi.org/10.1021/ar1000428
4.
4. R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, J. Chem. Phys. 131, 164706 (2009).
http://dx.doi.org/10.1063/1.3254199
5.
5. R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, Phys. Rev. Lett. 102, 127404 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.127404
6.
6. M. D. Garrett, M. J. Bowers, J. R. McBride, R. L. Orndorff, S. J. Pennycook, and S. J. Rosenthal, J. Phys. Chem. C 112, 436 (2008).
http://dx.doi.org/10.1021/jp7099306
7.
7. D. F. Underwood, T. Kippeny, and S. J. Rosenthal, J. Phys. Chem. B 105, 436 (2001).
http://dx.doi.org/10.1021/jp003088b
8.
8. P. Kambhampati, J. Phys. Chem. C 115, 22089 (2011).
http://dx.doi.org/10.1021/jp2058673
9.
9. M. Kuno, J. K. Lee, B. O. Dabbousi, F. V. Mikulec, and M. G. Bawendi, J. Chem. Phys. 106, 9869 (1997).
http://dx.doi.org/10.1063/1.473875
10.
10. H. Asami, Y. Abe, T. Ohtsu, I. Kamiya, and M. Hara, J. Phys. Chem. B 107, 12566 (2003).
http://dx.doi.org/10.1021/jp035484a
11.
11. P. Guyot-Sionnest, B. Wehrenberg, and D. Yu, J. Chem. Phys. 123, 074709 (2005).
http://dx.doi.org/10.1063/1.2004818
12.
12. D. V. Talapin, S. K. Poznyak, N. P. Gaponik, A. L. Rogach, and A. Eychmuller, Physica E 14, 237 (2002).
http://dx.doi.org/10.1016/S1386-9477(02)00391-0
13.
13. S. Geyer, V. J. Porter, J. E. Halpert, T. S. Mentzel, M. A. Kastner, and M. G. Bawendi, Phys. Rev. B 82, 155201 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155201
14.
14. Y. Zhang, H. Y. Zhang, J. Hollins, M. E. Webb, and D. J. Zhou, Phys. Chem. Chem. Phys. 13, 19427 (2011).
http://dx.doi.org/10.1039/c1cp22024a
15.
15. P. Tyagi and P. Kambhampati, J. Chem. Phys. 134, 094706 (2011).
http://dx.doi.org/10.1063/1.3561063
16.
16. M. C. Beard, A. G. Midgett, M. Law, O. E. Semonin, R. J. Ellingson, and A. J. Nozik, Nano Lett. 9, 836 (2009).
http://dx.doi.org/10.1021/nl803600v
17.
17. J. A. McGuire, M. Sykora, J. Joo, J. M. Pietryga, and V. I. Klimov, Nano Lett. 10, 2049 (2010).
http://dx.doi.org/10.1021/nl100177c
18.
18. M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996).
http://dx.doi.org/10.1021/jp9530562
19.
19. A. Hasselbarth, A. Eychmuller, and H. Weller, Chem. Phys. Lett. 203, 271 (1993).
http://dx.doi.org/10.1016/0009-2614(93)85400-I
20.
20. G. Kalyuzhny and R. W. Murray, J. Phys. Chem. B 109, 7012 (2005).
http://dx.doi.org/10.1021/jp045352x
21.
21. D. R. Baker and P. V. Kamat, Langmuir 26, 11272 (2010).
http://dx.doi.org/10.1021/la100580g
22.
22. N. Chestnoy, T. D. Harris, R. Hull, and L. E. Brus, J. Phys. Chem. 90, 3393 (1986).
http://dx.doi.org/10.1021/j100406a018
23.
23. E. Lifshitz, I. Dag, I. Litvin, G. Hodes, S. Gorer, R. Reisfeld, M. Zelner, and H. Minti, Chem. Phys. Lett. 288, 188 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00283-8
24.
24. V. Babentsov and F. Sizov, Opto-Electron. Rev. 16, 208 (2008).
http://dx.doi.org/10.2478/s11772-008-0025-0
25.
25. F. Gindele, R. Westphaling, U. Woggon, L. Spanhel, and V. Ptatschek, Appl. Phys. Lett. 71, 2181 (1997).
http://dx.doi.org/10.1063/1.119374
26.
26. S. Santhi, E. Bernstein, and F. Paille, J. Lumin. 117, 101 (2006).
http://dx.doi.org/10.1016/j.jlumin.2005.04.011
27.
27. V. Babentsov, J. Riegler, J. Schneider, M. Fiederle, and T. Nann, J. Phys. Chem. B 109, 15349 (2005).
http://dx.doi.org/10.1021/jp052229c
28.
28. V. Babentsov, J. Riegler, J. Schneider, O. Ehlert, T. Nann, and M. Fiederle, J. Cryst. Growth 280, 502 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2005.03.086
29.
29. A. Eychmüller, A. Haesselbarth, L. Katsikas, and H. Weller, Ber. Bunsenges. Phys. Chem. 95, 79 (1991).
http://dx.doi.org/10.1002/bbpc.19910950115
30.
30. J. Mooney, M. M. Krause, J. I. Saari, and P. Kambhampati, Phys. Rev. B 87, 081201R (2013).
http://dx.doi.org/10.1103/PhysRevB.87.081201
31.
31. J. Jortner, J. Chem. Phys. 64, 4860 (1976).
http://dx.doi.org/10.1063/1.432142
32.
32. E. J. Heller, R. L. Sundberg, and D. Tannor, J. Phys. Chem. 86, 1822 (1982).
http://dx.doi.org/10.1021/j100207a018
33.
33. T. Abitbol and D. Gray, Chem. Mater. 19, 4270 (2007).
http://dx.doi.org/10.1021/cm0704332
34.
34. T. Abitbol and D. G. Gray, Cellulose 16, 319 (2009).
http://dx.doi.org/10.1007/s10570-008-9263-z
35.
35. S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, D. M. Sagar, and P. Kambhampati, J. Chem. Phys. 129, 084701 (2008).
http://dx.doi.org/10.1063/1.2971181
36.
36. P. Tyagi, R. R. Cooney, S. L. Sewall, D. M. Sagar, J. I. Saari, and P. Kambhampati, Nano Lett. 10, 3062 (2010).
http://dx.doi.org/10.1021/nl101605r
37.
37. W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003).
http://dx.doi.org/10.1021/cm034081k
38.
38. M. Jones, S. S. Lo, and G. D. Scholes, Proc. Natl. Acad. Sci. U.S.A. 106, 3011 (2009).
http://dx.doi.org/10.1073/pnas.0809316106
39.
39. A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, J. Am. Chem. Soc. 112, 1327 (1990).
http://dx.doi.org/10.1021/ja00160a005
40.
40. D. Valerini, A. Creti, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, Phys. Rev. B 71, 235409 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.235409
41.
41. M. R. Salvador, M. W. Graham, and G. D. Scholes, J. Chem. Phys. 125, 184709 (2006).
http://dx.doi.org/10.1063/1.2363190
42.
42. T. J. Liptay, L. F. Marshall, P. S. Rao, R. J. Ram, and M. G. Bawendi, Phys. Rev. B 76, 155314 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.155314
43.
43. K. Zhang, H. Chang, A. Fu, A. P. Alivisatos, and H. Yang, Nano Lett. 6, 843 (2006).
http://dx.doi.org/10.1021/nl060483q
44.
44. A. B. Myers, Chem. Phys. 180, 215 (1994).
http://dx.doi.org/10.1016/0301-0104(93)E0420-Z
45.
45. M. M. Krause, J. Mooney, and P. Kambhampati, “Chemical and thermodynamic control of the surface of semiconductor nanocrystals for designer white light emitters,” ACS Nano (submitted).
46.
46. D. M. Sagar, R. R. Cooney, S. L. Sewall, E. A. Dias, M. M. Barsan, I. S. Butler, and P. Kambhampati, Phys. Rev. B 77, 235321 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235321
47.
47. D. M. Sagar, R. R. Cooney, S. L. Sewall, and P. Kambhampati, J. Phys. Chem. C 112, 9124 (2008).
http://dx.doi.org/10.1021/jp803386g
48.
48. T. D. Krauss and F. W. Wise, Phys. Rev. Lett. 79, 5102 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.5102
49.
49. J. J. Shiang, S. H. Risbud, and A. P. Alivisatos, J. Chem. Phys. 98, 8432 (1993).
http://dx.doi.org/10.1063/1.464501
50.
50. T. D. Krauss and F. W. Wise, Phys. Rev. B 55, 9860 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.9860
51.
51. H. Lange, M. Machon, M. Artemyev, U. Woggon, and C. Thomsen, Phys. Status Solidi (RRL) 1, 274 (2007).
http://dx.doi.org/10.1002/pssr.200701133
52.
52. H. Lange, M. Artemyev, U. Woggon, T. Niermann, and C. Thomsen, Phys. Rev. B 77, 193303 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.193303
53.
53. H. Lange, M. Mohr, M. Artemyev, U. Woggon, T. Niermann, and C. Thomsen, Phys. Status Solidi B 247, 2488 (2010).
http://dx.doi.org/10.1002/pssb.201046042
54.
54. M. R. Salvador, M. A. Hines, and G. D. Scholes, J. Chem. Phys. 118, 9380 (2003).
http://dx.doi.org/10.1063/1.1568733
55.
55.See supplementary material at http://dx.doi.org/10.1063/1.4807054 for model equations and additional evidence to support a semiclassical electron transfer model. [Supplementary Material]
56.
56. B. R. Fisher, H. J. Eisler, N. E. Stott, and M. G. Bawendi, J. Phys. Chem. B 108, 143 (2004).
http://dx.doi.org/10.1021/jp035756+
57.
57. S. A. Crooker, T. Barrick, J. A. Hollingsworth, and V. I. Klimov, Appl. Phys. Lett. 82, 2793 (2003).
http://dx.doi.org/10.1063/1.1570923
58.
58. J. Yang and F. W. Wise, private communication (27 February 2013).
59.
59. R. Dorner, J. Goold, L. Heaney, T. Farrow, and V. Vedral, Phys. Rev. E 86, 031922 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.031922
60.
60. R. Dorner and V. Vedral, private communication (26 March 2013).
61.
61. Y. Ebenstein, T. Mokari, and U. Banin, Appl. Phys. Lett. 80, 4033 (2002).
http://dx.doi.org/10.1063/1.1482785
62.
62. R. W. Schoenlein, D. M. Mittleman, J. J. Shiang, A. P. Alivisatos, and C. V. Shank, Phys. Rev. Lett. 70, 1014 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.1014
63.
63. M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus, Phys. Rev. Lett. 65, 1623 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.1623
64.
64. Y. Sun, F. Masia, W. Langbein, and P. Borri, Physica Status Solidi A 206, 2822 (2009).
http://dx.doi.org/10.1002/pssa.200925250
65.
65. J. Müller, J. M. Lupton, A. L. Rogach, J. Feldmann, D. V. Talapin, and H. Weller, Phys. Rev. Lett. 93, 167402 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.167402
66.
66. J. Martin, F. Cichos, F. Huisken, and C. von Borczyskowski, Nano Lett. 8, 656 (2008).
http://dx.doi.org/10.1021/nl0731163
67.
67. D. M. Mittleman, R. W. Schoenlein, J. J. Shiang, V. L. Colvin, A. P. Alivisatos, and C. V. Shank, Phys. Rev. B 49, 14435 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14435
68.
68. M. Nirmal, C. B. Murray, and M. G. Bawendi, Phys. Rev. B 50, 2293 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.2293
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/20/10.1063/1.4807054
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

PL spectra of CdSe (a), CdSe/ZnS (b), and CdS (c) NC from 10 K to 300 K. The core PL appears at higher energies while the surface PL is broader and redshifted.

Image of FIG. 2.

Click to view

FIG. 2.

Integrated lineshape areas for core and surface of R = 1.15 nm CdSe (a), CdSe/ZnS (b), CdS (c), and R = 1.22 nm CdSe (d). Although the samples span a range of compositions and relative amounts of core:surface area, two trends are consistent: surface emission increases faster than core emission as temperature drops to ∼100 K, and below ∼100 K surface emission decreases substantially with a shape complementary to the increase in core emission. Solid lines represent output from the model. Total integrated lineshape areas (core + surface) for several NC samples (e). All samples show a rather consistent increase in area as temperature decreases. Solid lines represent output from the model.

Image of FIG. 3.

Click to view

FIG. 3.

Temperature dependence of the relative (surface to core) lineshape areas for R = 1.15 nm CdSe (a), CdSe/ZnS (b), CdS (c), and R = 1.22 nm CdSe (d). All samples exhibit a characteristic maximum for the surface to core ratio between 70 and 100 K. Solid lines represent output from the model.

Image of FIG. 4.

Click to view

FIG. 4.

Temperature dependence of the FHWM of core and surface PL peaks for R = 1.15 nm CdSe (a, red symbols), R = 1.22 nm CdSe (a, blue symbols), CdSe/ZnS (b), and CdS (c). The core peaks show a characteristic decrease in FWHM as temperature drops to ∼25 K (see text) while increasing below 25 K. With the exception of CdSe samples above 200 K, the surface FWHM is largely independent of temperature.

Image of FIG. 5.

Click to view

FIG. 5.

Schematic representation of electron-transfer. A displaced (strongly coupled) harmonic oscillator will emit into several vibrational levels of the ground-state, while an undisplaced oscillator will emit primarily into one state (a). With stronger coupling, a broader and redshifted spectrum is observed (b).

Image of FIG. 6.

Click to view

FIG. 6.

Coherent phonons present in the transient absorption spectrum of CdSe NCs (a). Removing the non-oscillatory component due to electronic effects shows the features due to phonons only (b). Amplitudes within the FFT of the oscillatory data provide a measure of electron-phonon coupling strength for the core state (c).

Image of FIG. 7.

Click to view

FIG. 7.

Resonance Raman spectrum of CdSe NCs, showing fundamental phonon peak at 206 cm and overtone at 410 cm. A cumulative fit to the data results in two LO phonon peaks (green) and two SO phonon peaks at the leading edge of the LO phonon peaks (red).

Image of FIG. 8.

Click to view

FIG. 8.

Simulated spectra of CdSe NCs at several temperatures. Light grey lines show the raw data.

Loading

Article metrics loading...

/content/aip/journal/jcp/138/20/10.1063/1.4807054
2013-05-22
2014-04-16

Abstract

Several different compositions of semiconductor nanocrystals are subjected to numerous spectroscopic techniques to elucidate the nature of surface trapping in these systems. We find a consistent temperature-dependent relationship between core and surface photoluminescence intensity and marked differences in electron-phonon coupling for core and surface states based on ultrafast measurements and Resonance Raman studies, respectively. These results support a minimal model of surface charge trapping applicable to a range of nanocrystal systems involving a single surface state in which the trapped charge polarization leads to strong phonon couplings, with transitions between the surface and band edge excitonic states being governed by semiclassical electron-transfer theory.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/20/1.4807054.html;jsessionid=3bu9th2g4v6lp.x-aip-live-01?itemId=/content/aip/journal/jcp/138/20/10.1063/1.4807054&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A microscopic picture of surface charge trapping in semiconductor nanocrystals
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/20/10.1063/1.4807054
10.1063/1.4807054
SEARCH_EXPAND_ITEM