1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
A microscopic picture of surface charge trapping in semiconductor nanocrystals
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/20/10.1063/1.4807054
1.
1. C. Galland, Y. Ghosh, A. Steinbruck, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, Nature (London) 479, 203 (2011).
http://dx.doi.org/10.1038/nature10569
2.
2. S. Rosen, O. Schwartz, and D. Oron, Phys. Rev. Lett. 104, 157404 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.157404
3.
3. P. Kambhampati, Acc. Chem. Res. 44, 1 (2011).
http://dx.doi.org/10.1021/ar1000428
4.
4. R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, J. Chem. Phys. 131, 164706 (2009).
http://dx.doi.org/10.1063/1.3254199
5.
5. R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, Phys. Rev. Lett. 102, 127404 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.127404
6.
6. M. D. Garrett, M. J. Bowers, J. R. McBride, R. L. Orndorff, S. J. Pennycook, and S. J. Rosenthal, J. Phys. Chem. C 112, 436 (2008).
http://dx.doi.org/10.1021/jp7099306
7.
7. D. F. Underwood, T. Kippeny, and S. J. Rosenthal, J. Phys. Chem. B 105, 436 (2001).
http://dx.doi.org/10.1021/jp003088b
8.
8. P. Kambhampati, J. Phys. Chem. C 115, 22089 (2011).
http://dx.doi.org/10.1021/jp2058673
9.
9. M. Kuno, J. K. Lee, B. O. Dabbousi, F. V. Mikulec, and M. G. Bawendi, J. Chem. Phys. 106, 9869 (1997).
http://dx.doi.org/10.1063/1.473875
10.
10. H. Asami, Y. Abe, T. Ohtsu, I. Kamiya, and M. Hara, J. Phys. Chem. B 107, 12566 (2003).
http://dx.doi.org/10.1021/jp035484a
11.
11. P. Guyot-Sionnest, B. Wehrenberg, and D. Yu, J. Chem. Phys. 123, 074709 (2005).
http://dx.doi.org/10.1063/1.2004818
12.
12. D. V. Talapin, S. K. Poznyak, N. P. Gaponik, A. L. Rogach, and A. Eychmuller, Physica E 14, 237 (2002).
http://dx.doi.org/10.1016/S1386-9477(02)00391-0
13.
13. S. Geyer, V. J. Porter, J. E. Halpert, T. S. Mentzel, M. A. Kastner, and M. G. Bawendi, Phys. Rev. B 82, 155201 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155201
14.
14. Y. Zhang, H. Y. Zhang, J. Hollins, M. E. Webb, and D. J. Zhou, Phys. Chem. Chem. Phys. 13, 19427 (2011).
http://dx.doi.org/10.1039/c1cp22024a
15.
15. P. Tyagi and P. Kambhampati, J. Chem. Phys. 134, 094706 (2011).
http://dx.doi.org/10.1063/1.3561063
16.
16. M. C. Beard, A. G. Midgett, M. Law, O. E. Semonin, R. J. Ellingson, and A. J. Nozik, Nano Lett. 9, 836 (2009).
http://dx.doi.org/10.1021/nl803600v
17.
17. J. A. McGuire, M. Sykora, J. Joo, J. M. Pietryga, and V. I. Klimov, Nano Lett. 10, 2049 (2010).
http://dx.doi.org/10.1021/nl100177c
18.
18. M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996).
http://dx.doi.org/10.1021/jp9530562
19.
19. A. Hasselbarth, A. Eychmuller, and H. Weller, Chem. Phys. Lett. 203, 271 (1993).
http://dx.doi.org/10.1016/0009-2614(93)85400-I
20.
20. G. Kalyuzhny and R. W. Murray, J. Phys. Chem. B 109, 7012 (2005).
http://dx.doi.org/10.1021/jp045352x
21.
21. D. R. Baker and P. V. Kamat, Langmuir 26, 11272 (2010).
http://dx.doi.org/10.1021/la100580g
22.
22. N. Chestnoy, T. D. Harris, R. Hull, and L. E. Brus, J. Phys. Chem. 90, 3393 (1986).
http://dx.doi.org/10.1021/j100406a018
23.
23. E. Lifshitz, I. Dag, I. Litvin, G. Hodes, S. Gorer, R. Reisfeld, M. Zelner, and H. Minti, Chem. Phys. Lett. 288, 188 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00283-8
24.
24. V. Babentsov and F. Sizov, Opto-Electron. Rev. 16, 208 (2008).
http://dx.doi.org/10.2478/s11772-008-0025-0
25.
25. F. Gindele, R. Westphaling, U. Woggon, L. Spanhel, and V. Ptatschek, Appl. Phys. Lett. 71, 2181 (1997).
http://dx.doi.org/10.1063/1.119374
26.
26. S. Santhi, E. Bernstein, and F. Paille, J. Lumin. 117, 101 (2006).
http://dx.doi.org/10.1016/j.jlumin.2005.04.011
27.
27. V. Babentsov, J. Riegler, J. Schneider, M. Fiederle, and T. Nann, J. Phys. Chem. B 109, 15349 (2005).
http://dx.doi.org/10.1021/jp052229c
28.
28. V. Babentsov, J. Riegler, J. Schneider, O. Ehlert, T. Nann, and M. Fiederle, J. Cryst. Growth 280, 502 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2005.03.086
29.
29. A. Eychmüller, A. Haesselbarth, L. Katsikas, and H. Weller, Ber. Bunsenges. Phys. Chem. 95, 79 (1991).
http://dx.doi.org/10.1002/bbpc.19910950115
30.
30. J. Mooney, M. M. Krause, J. I. Saari, and P. Kambhampati, Phys. Rev. B 87, 081201R (2013).
http://dx.doi.org/10.1103/PhysRevB.87.081201
31.
31. J. Jortner, J. Chem. Phys. 64, 4860 (1976).
http://dx.doi.org/10.1063/1.432142
32.
32. E. J. Heller, R. L. Sundberg, and D. Tannor, J. Phys. Chem. 86, 1822 (1982).
http://dx.doi.org/10.1021/j100207a018
33.
33. T. Abitbol and D. Gray, Chem. Mater. 19, 4270 (2007).
http://dx.doi.org/10.1021/cm0704332
34.
34. T. Abitbol and D. G. Gray, Cellulose 16, 319 (2009).
http://dx.doi.org/10.1007/s10570-008-9263-z
35.
35. S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, D. M. Sagar, and P. Kambhampati, J. Chem. Phys. 129, 084701 (2008).
http://dx.doi.org/10.1063/1.2971181
36.
36. P. Tyagi, R. R. Cooney, S. L. Sewall, D. M. Sagar, J. I. Saari, and P. Kambhampati, Nano Lett. 10, 3062 (2010).
http://dx.doi.org/10.1021/nl101605r
37.
37. W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003).
http://dx.doi.org/10.1021/cm034081k
38.
38. M. Jones, S. S. Lo, and G. D. Scholes, Proc. Natl. Acad. Sci. U.S.A. 106, 3011 (2009).
http://dx.doi.org/10.1073/pnas.0809316106
39.
39. A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, J. Am. Chem. Soc. 112, 1327 (1990).
http://dx.doi.org/10.1021/ja00160a005
40.
40. D. Valerini, A. Creti, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, Phys. Rev. B 71, 235409 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.235409
41.
41. M. R. Salvador, M. W. Graham, and G. D. Scholes, J. Chem. Phys. 125, 184709 (2006).
http://dx.doi.org/10.1063/1.2363190
42.
42. T. J. Liptay, L. F. Marshall, P. S. Rao, R. J. Ram, and M. G. Bawendi, Phys. Rev. B 76, 155314 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.155314
43.
43. K. Zhang, H. Chang, A. Fu, A. P. Alivisatos, and H. Yang, Nano Lett. 6, 843 (2006).
http://dx.doi.org/10.1021/nl060483q
44.
44. A. B. Myers, Chem. Phys. 180, 215 (1994).
http://dx.doi.org/10.1016/0301-0104(93)E0420-Z
45.
45. M. M. Krause, J. Mooney, and P. Kambhampati, “Chemical and thermodynamic control of the surface of semiconductor nanocrystals for designer white light emitters,” ACS Nano (submitted).
46.
46. D. M. Sagar, R. R. Cooney, S. L. Sewall, E. A. Dias, M. M. Barsan, I. S. Butler, and P. Kambhampati, Phys. Rev. B 77, 235321 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235321
47.
47. D. M. Sagar, R. R. Cooney, S. L. Sewall, and P. Kambhampati, J. Phys. Chem. C 112, 9124 (2008).
http://dx.doi.org/10.1021/jp803386g
48.
48. T. D. Krauss and F. W. Wise, Phys. Rev. Lett. 79, 5102 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.5102
49.
49. J. J. Shiang, S. H. Risbud, and A. P. Alivisatos, J. Chem. Phys. 98, 8432 (1993).
http://dx.doi.org/10.1063/1.464501
50.
50. T. D. Krauss and F. W. Wise, Phys. Rev. B 55, 9860 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.9860
51.
51. H. Lange, M. Machon, M. Artemyev, U. Woggon, and C. Thomsen, Phys. Status Solidi (RRL) 1, 274 (2007).
http://dx.doi.org/10.1002/pssr.200701133
52.
52. H. Lange, M. Artemyev, U. Woggon, T. Niermann, and C. Thomsen, Phys. Rev. B 77, 193303 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.193303
53.
53. H. Lange, M. Mohr, M. Artemyev, U. Woggon, T. Niermann, and C. Thomsen, Phys. Status Solidi B 247, 2488 (2010).
http://dx.doi.org/10.1002/pssb.201046042
54.
54. M. R. Salvador, M. A. Hines, and G. D. Scholes, J. Chem. Phys. 118, 9380 (2003).
http://dx.doi.org/10.1063/1.1568733
55.
55.See supplementary material at http://dx.doi.org/10.1063/1.4807054 for model equations and additional evidence to support a semiclassical electron transfer model. [Supplementary Material]
56.
56. B. R. Fisher, H. J. Eisler, N. E. Stott, and M. G. Bawendi, J. Phys. Chem. B 108, 143 (2004).
http://dx.doi.org/10.1021/jp035756+
57.
57. S. A. Crooker, T. Barrick, J. A. Hollingsworth, and V. I. Klimov, Appl. Phys. Lett. 82, 2793 (2003).
http://dx.doi.org/10.1063/1.1570923
58.
58. J. Yang and F. W. Wise, private communication (27 February 2013).
59.
59. R. Dorner, J. Goold, L. Heaney, T. Farrow, and V. Vedral, Phys. Rev. E 86, 031922 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.031922
60.
60. R. Dorner and V. Vedral, private communication (26 March 2013).
61.
61. Y. Ebenstein, T. Mokari, and U. Banin, Appl. Phys. Lett. 80, 4033 (2002).
http://dx.doi.org/10.1063/1.1482785
62.
62. R. W. Schoenlein, D. M. Mittleman, J. J. Shiang, A. P. Alivisatos, and C. V. Shank, Phys. Rev. Lett. 70, 1014 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.1014
63.
63. M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus, Phys. Rev. Lett. 65, 1623 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.1623
64.
64. Y. Sun, F. Masia, W. Langbein, and P. Borri, Physica Status Solidi A 206, 2822 (2009).
http://dx.doi.org/10.1002/pssa.200925250
65.
65. J. Müller, J. M. Lupton, A. L. Rogach, J. Feldmann, D. V. Talapin, and H. Weller, Phys. Rev. Lett. 93, 167402 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.167402
66.
66. J. Martin, F. Cichos, F. Huisken, and C. von Borczyskowski, Nano Lett. 8, 656 (2008).
http://dx.doi.org/10.1021/nl0731163
67.
67. D. M. Mittleman, R. W. Schoenlein, J. J. Shiang, V. L. Colvin, A. P. Alivisatos, and C. V. Shank, Phys. Rev. B 49, 14435 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14435
68.
68. M. Nirmal, C. B. Murray, and M. G. Bawendi, Phys. Rev. B 50, 2293 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.2293
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/20/10.1063/1.4807054
Loading
/content/aip/journal/jcp/138/20/10.1063/1.4807054
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/20/10.1063/1.4807054
2013-05-22
2014-10-02

Abstract

Several different compositions of semiconductor nanocrystals are subjected to numerous spectroscopic techniques to elucidate the nature of surface trapping in these systems. We find a consistent temperature-dependent relationship between core and surface photoluminescence intensity and marked differences in electron-phonon coupling for core and surface states based on ultrafast measurements and Resonance Raman studies, respectively. These results support a minimal model of surface charge trapping applicable to a range of nanocrystal systems involving a single surface state in which the trapped charge polarization leads to strong phonon couplings, with transitions between the surface and band edge excitonic states being governed by semiclassical electron-transfer theory.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/20/1.4807054.html;jsessionid=1k6qh2o611558.x-aip-live-02?itemId=/content/aip/journal/jcp/138/20/10.1063/1.4807054&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A microscopic picture of surface charge trapping in semiconductor nanocrystals
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/20/10.1063/1.4807054
10.1063/1.4807054
SEARCH_EXPAND_ITEM