1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Existence of the doubly excited state that mediates the photoionization of azulene
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/20/10.1063/1.4808014
1.
1. V. Blanchet, K. Raffael, G. Turri, B. Chatel, B. Girard, I. A. Garcia, I. Wilkinson, and B. J. Whitaker, J. Chem. Phys. 128, 164318 (2008).
http://dx.doi.org/10.1063/1.2913167
2.
2. N. Kuthirummal and P. M. Weber, Chem. Phys. Lett. 378, 647 (2003).
http://dx.doi.org/10.1016/j.cplett.2003.08.002
3.
3. N. Kuthirummal and P. M. Weber, J. Mol. Struct. 787, 163 (2006).
http://dx.doi.org/10.1016/j.molstruc.2005.10.043
4.
4.See supplementary material at http://dx.doi.org/10.1063/1.4808014 for the geometries of azulene used in the EOMCC calculations, as compared with other theoretical and experimental data, and the leading excitation amplitudes and oscillator strengths characterizing all of the states listed in Table I. [Supplementary Material]
5.
5. M. Kasha, Discuss. Faraday Soc. 9, 14 (1950).
http://dx.doi.org/10.1039/df9500900014
6.
6. E. W.-G. Diau, S. De Feyter, and A. H. Zewail, J. Chem. Phys. 110, 9785 (1999).
http://dx.doi.org/10.1063/1.478031
7.
7. O. K. Abou-Zied, D. R. M. Demmer, S. C. Wallace, and R. P. Steer, Chem. Phys. Lett. 266, 75 (1997).
http://dx.doi.org/10.1016/S0009-2614(96)01507-2
8.
8. Y. Hirata and E. C. Lim, J. Chem. Phys. 69, 3292 (1978).
http://dx.doi.org/10.1063/1.436981
9.
9. T. Makinoshima, M. Fujitsuka, M. Sasaki, Y. Araki, O. Ito, S. Ito, and N. Morita, J. Phys. Chem. A 108, 368 (2004).
http://dx.doi.org/10.1021/jp0342428
10.
10. P. M. Weber and N. Thantu, Chem. Phys. Lett. 197, 556 (1992).
http://dx.doi.org/10.1016/0009-2614(92)85815-R
11.
11. M. Fujii, T. Ebata, N. Mikami, and M. Ito, Chem. Phys. 77, 191 (1983).
http://dx.doi.org/10.1016/0301-0104(83)85076-9
12.
12. P. Foggi and F. V. R. Neuwahl, J. Phys. Chem. A 107, 1689 (2003).
http://dx.doi.org/10.1021/jp021313e
13.
13. J. R. Cable and A. C. Albrecht, J. Chem. Phys. 84, 1969 (1986).
http://dx.doi.org/10.1063/1.450404
14.
14. L. Ciano, P. Foggi, and P. Remigio-Salvi, J. Photochem. Photobiol. B 105, 129 (1997).
http://dx.doi.org/10.1016/S1010-6030(96)04606-0
15.
15. M. Damm, F. Deckert, H. Hippler, and J. Troe, J. Phys. Chem. 95, 2005 (1991).
http://dx.doi.org/10.1021/j100158a022
16.
16. H. Hippler, L. Lindemann, and J. Troe, J. Chem. Phys. 83, 3906 (1985).
http://dx.doi.org/10.1063/1.449843
17.
17. U. Hold, T. Lenzer, K. Luther, and A. C. Symonds, J. Chem. Phys. 119, 11192 (2003).
http://dx.doi.org/10.1063/1.1622382
18.
18. Y. Hatano, Phys. Rep. 313, 109 (1999).
http://dx.doi.org/10.1016/S0370-1573(98)00086-6
19.
19. K. Raffael, V. Blanchet, B. Chatel, G. Turri, B. Girard, I. A. Garcia, I. Wilkinson, and B. J. Whitaker, Chem. Phys. Lett. 460, 59 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.06.009
20.
20. M. S. Deleuze, J. Chem. Phys. 116, 7012 (2002).
http://dx.doi.org/10.1063/1.1462615
21.
21. W. Gerhartz and J. Michl, J. Am. Chem. Soc. 100, 6877 (1978).
http://dx.doi.org/10.1021/ja00490a014
22.
22. J. F. Stanton and R. J. Bartlett, J. Chem. Phys. 98, 7029 (1993).
http://dx.doi.org/10.1063/1.464746
23.
23. G. Fradelos, J. J. Lutz, T. A. Wesołowski, P. Piecuch, and M. Włoch, J. Chem. Theory Comput. 7, 1647 (2011).
http://dx.doi.org/10.1021/ct200101x
24.
24. A. Murakami, T. Kobayashi, A. Goldberg, and S. Nakamura, J. Chem. Phys. 120, 1245 (2004).
http://dx.doi.org/10.1063/1.1631914
25.
25. H. Koch, H. J. A. Jensen, P. Jørgensen, and T. Helgaker, J. Chem. Phys. 93, 3345 (1990).
http://dx.doi.org/10.1063/1.458815
26.
26. M. Włoch, M. D. Lodriguito, P. Piecuch, and J. R. Gour, Mol. Phys. 104, 2149 (2006).
http://dx.doi.org/10.1080/00268970600659586
27.
27. J. Čížek, J. Chem. Phys. 45, 4256 (1966).
http://dx.doi.org/10.1063/1.1727484
28.
28. P. Piecuch and M. Włoch, J. Chem. Phys. 123, 224105 (2005).
http://dx.doi.org/10.1063/1.2137318
29.
29. K. Kowalski and P. Piecuch, J. Chem. Phys. 120, 1715 (2004).
http://dx.doi.org/10.1063/1.1632474
30.
30. M. Włoch, J. R. Gour, K. Kowalski, and P. Piecuch, J. Chem. Phys. 122, 214107 (2005).
http://dx.doi.org/10.1063/1.1924596
31.
31. J. D. Watts and R. J. Bartlett, Chem. Phys. Lett. 258, 581 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00708-7
32.
32. T. Shiozaki, K. Hirao, and S. Hirata, J. Chem. Phys. 126, 244106 (2007).
http://dx.doi.org/10.1063/1.2741262
33.
33. M. S. Gordon and M. W. Schmidt, in Theory and Applications of Computational Chemistry: The First Forty Years, edited by C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria (Elsevier, Amsterdam, 2005), pp. 11671190.
34.
34. R. Pariser, J. Chem. Phys. 25, 1112 (1956).
http://dx.doi.org/10.1063/1.1743159
35.
35. K. Kowalski and P. Piecuch, J. Chem. Phys. 115, 643 (2001).
http://dx.doi.org/10.1063/1.1378323
36.
36. N. Thire, R. Cireasa, D. Staedter, V. Blanchet, and S. T. Pratt, Phys. Chem. Chem. Phys. 13, 18485 (2011).
http://dx.doi.org/10.1039/c1cp22057h
37.
37. S. Deb and P. M. Weber, Annu. Rev. Phys. Chem. 62, 19 (2011).
http://dx.doi.org/10.1146/annurev.physchem.012809.103350
38.
38. J. O. Johansson, G. G. Henderson, F. Remacle, and E. E. B. Campbell, Phys. Rev. Lett. 108, 173401 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.173401
39.
39. P. Hemberger, J. Kohler, I. Fischer, G. Piani, L. Poisson, and J.-M. Mestdagh, Phys. Chem. Chem. Phys. 14, 6173 (2012).
http://dx.doi.org/10.1039/c2cp23728h
40.
40. M. P. Minitti, J. D. Cardoza, and P. M. Weber, J. Phys. Chem. A 110, 10212 (2006).
http://dx.doi.org/10.1021/jp062539a
41.
41. M. P. Minitti and P. M. Weber, Phys. Rev. Lett. 98, 253004 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.253004
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/20/10.1063/1.4808014
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The photoelectron spectrum of azulene using a probe pulse centered at 400 nm, recorded for four pump excitation energies (the corresponding vibrational energies in given in parentheses), namely, 201 nm (2.61 eV; this work), 268 nm (1.07 eV; Ref. ), 283 nm (0.82 eV; Ref. ), and 335 nm (0.14 eV; Ref. ), and a pump-probe delay time of 500 fs (for other pump-probe delay times, which yield similar spectra, see Ref. ). The unstructured direct ionization (65% of photoionization events) has been substracted. Each spectral profile represents a fingerprint of the Rydberg states from which azulene is photoionized after absorbing the second probe photon. The electronic energies of these Rydberg states are marked by , , etc. Two horizontal axes near the top show the vibrational energies in Rydberg states for the pump wavelengths of 201 and 335 nm.

Image of FIG. 2.

Click to view

FIG. 2.

The proposed schematics of the 1 + 2′ photoionization experiment. The Rydberg states, from which azulene is photoionized, are populated by the electronic relaxation from the postulated doubly excited state located below the ionization threshold , marked by **. Excitation of the doubly excited state from , relaxation into the Rydberg states, and photoionization take place within the probe pulse duration (100 fs).

Tables

Generic image for table

Click to view

Table I.

Vertical excitation energies (in eV) and REL values for excited states of azulene found in this work.

Generic image for table

Click to view

Table II.

Absolute values of the reference ( ) and leading singly ( ) and doubly ( ) excited EOMCCSD amplitudes.

Generic image for table

Click to view

Table III.

Comparison of the EOMCCSD oscillator strengths involving selected states of azulene with the available experimental data.

Loading

Article metrics loading...

/content/aip/journal/jcp/138/20/10.1063/1.4808014
2013-05-29
2014-04-19

Abstract

We use the high-level electronic structure computations based on the equation-of-motion coupled-cluster (EOMCC) theory to show that the previously postulated [V. Blanchet et al. , J. Chem. Phys.128, 164318 (Year: 2008)10.1063/1.2913167] doubly excited state of azulene, located below the ionization threshold and mediating the 1 + 2′ multi-photon ionization that leads to a Rydberg fingerprint, exists. This supports the crucial role of doubly excited states in the Rydberg fingerprint spectroscopy, while demonstrating the usefulness of EOMCC methods in capturing such states.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/20/1.4808014.html;jsessionid=ahsjapsmc5e3.x-aip-live-03?itemId=/content/aip/journal/jcp/138/20/10.1063/1.4808014&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Existence of the doubly excited state that mediates the photoionization of azulene
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/20/10.1063/1.4808014
10.1063/1.4808014
SEARCH_EXPAND_ITEM