Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/138/21/10.1063/1.4807479
1.
1. P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Nature (London) 360, 324 (1992).
http://dx.doi.org/10.1038/360324a0
2.
2. D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011).
http://dx.doi.org/10.1063/1.3643333
3.
3. V. Molinero and E. B. Moore, J. Phys. Chem. B 113, 4008 (2009).
http://dx.doi.org/10.1021/jp805227c
4.
4. F. H. Stillinger and A. Rahman, J. Chem. Phys. 60, 1545 (1974).
http://dx.doi.org/10.1063/1.1681229
5.
5. F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.5262
6.
6. S. Sastry and C. A. Angell, Nat. Mater. 2, 739 (2003).
http://dx.doi.org/10.1038/nmat994
7.
7. I. Brovchenko, A. Geiger, and A. Oleinikova, J. Chem. Phys. 118, 9473 (2003).
http://dx.doi.org/10.1063/1.1576372
8.
8. L. Xu, P. Kumar, S. Buldyrev, S. H. Chen, P. H. Poole, F. Sciortino, and H. E. Stanley, Proc. Natl. Acad. Sci. U.S.A. 102, 16558 (2005).
http://dx.doi.org/10.1073/pnas.0507870102
9.
9. P. Beaucage and N. Mousseau, J. Phys.: Condens. Matter 17, 2269 (2005).
http://dx.doi.org/10.1088/0953-8984/17/15/002
10.
10. Y. Liu, A. Z. Panagiotopoulos, and P. G. Debenedetti, J. Chem. Phys. 131, 104508 (2009).
http://dx.doi.org/10.1063/1.3229892
11.
11. F. Sciortino, I. Saika-Voivod, and P. H. Poole, Phys. Chem. Chem. Phys. 13, 19759 (2011).
http://dx.doi.org/10.1039/c1cp22316j
12.
12. E. B. Moore and V. Molinero, J. Chem. Phys. 130, 244505 (2009).
http://dx.doi.org/10.1063/1.3158470
13.
13. L. Xu and V. Molinero, J. Phys. Chem. B 115, 14210 (2011).
http://dx.doi.org/10.1021/jp205045k
14.
14. V. V. Vasisht, S. Saw, and S. Sastry, Nat. Phys. 7, 549 (2011).
http://dx.doi.org/10.1038/nphys1993
15.
15. Y. Liu, J. C. Palmer, A. Z. Panagiotopoulos, and P. G. Debenedetti, J. Chem. Phys. 137, 214505 (2012).
http://dx.doi.org/10.1063/1.4769126
16.
16. T. A. Kesselring, G. Franzese, S. V. Buldyrev, H. J. Herrmann, and H. E. Stanley, Sci. Rep. 2, 474 (2012).
http://dx.doi.org/10.1038/srep00474
17.
17. T. Kesselring, Ph.D. dissertation, Eidgenössische Technische Hochschule (ETH) Zürich, Nr. 20138, 2012.
18.
18. T. A. Kesselring, E. Lascaris, G. Franzese, S. V. Buldyrev, H. J. Herrmann, and H. E. Stanley, “Finite-size scaling analysis investigation of the liquid-liquid critical point in ST2 water and its stability with respect to crystallization,” preprint arXiv:1302.1894 (2013).
19.
19. P. H. Poole, R. K. Bowles, I. Saika-Voivod, and F. Sciortino, J. Chem. Phys. 138, 034505 (2013).
http://dx.doi.org/10.1063/1.4775738
20.
20. C. A. Angell, Annu. Rev. Phys. Chem. 34, 593 (1983).
http://dx.doi.org/10.1146/annurev.pc.34.100183.003113
21.
21. T. Koop, B. Luo, A. Tsias, and T. Peter, Nature (London) 406, 611 (2000).
http://dx.doi.org/10.1038/35020537
22.
22. D. Frenkel and B. Smit, Understanding Molecular Simulations: From Algorithms to Applications (Academic press, 2001), Vol. 1.
23.
23. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.784
24.
24. Formulas for computing Q6 are Eqs. (1)–(3) in Ref. 2.
25.
25. P. G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, 1996).
26.
26. D. T. Limmer and D. Chandler, “The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water,” preprint arXiv:1107.0337 (2011).
27.
27. E. Moore and V. Molinero, J. Chem. Phys. 132, 244504 (2010).
http://dx.doi.org/10.1063/1.3451112
28.
28. D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, New York, 1987).
29.
29. A. Pohorille, C. Jarzynski, and C. Chipot, J. Phys. Chem. B 114, 10235 (2010).
http://dx.doi.org/10.1021/jp102971x
30.
30. J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005).
http://dx.doi.org/10.1063/1.2121687
31.
31. O. Mishima, L. D. Calvert, and E. Whalley, Nature (London) 314, 76 (1985).
http://dx.doi.org/10.1038/314076a0
32.
32. I. Kohl, L. Bachmann, A. Hallbrucker, E. Mayer, and T. Loerting, Phys. Chem. Chem. Phys. 7, 3210 (2005).
http://dx.doi.org/10.1039/b507651j
33.
33. M. S. Elsaesser, K. Winkel, E. Mayer, and T. Loerting, Phys. Chem. Chem. Phys. 12, 708 (2010).
http://dx.doi.org/10.1039/b917662d
34.
34. C. A. Angell, Science 319, 582 (2008).
http://dx.doi.org/10.1126/science.1131939
35.
35. O. Mishima and H. E. Stanley, Nature (London) 396, 329 (1998).
http://dx.doi.org/10.1038/24540
36.
36. K. Stokely, M. G. Mazza, H. E. Stanley, and G. Franzese, Proc. Natl. Acad. Sci. U.S.A. 107, 1301 (2010).
http://dx.doi.org/10.1073/pnas.0912756107
37.
37. O. Mishima, Phys. Rev. Lett. 85, 334 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.334
38.
38. P. H. Poole, F. Sciortino, T. Grande, H. E. Stanley, and C. A. Angell, Phys. Rev. Lett. 73, 1632 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.1632
39.
39. D. T. Limmer and D. Chandler, J. Chem. Phys. 137, 044509 (2012).
http://dx.doi.org/10.1063/1.4737907
40.
40. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge Univ Press, 2000).
41.
41. E. Isaacson and H. Keller, Analysis of Numerical Methods (Dover Publications, 1994).
42.
42. The stochastic steps in the Langevin dynamics for Q6 use the diffusion constant D and time scale specified for the corresponding Fokker-Planck Eq. (3). The stochastic steps for ρ use the diffusion constant Dρ = ⟨(δρ)2 ⟩ /τρ, where , and is the mean-square fluctuation of density in the liquid basin of Fig. 2(a).
43.
43. C. Huang, C. Li, P. Y. Choi, K. Nandakumar, and L. W. Kostiuk, Mol. Phys. 109, 191 (2011).
http://dx.doi.org/10.1080/00268976.2010.513345
44.
44. D. Frenkel, “Simulations: The dark side,” preprint arXiv:1211.4440 (2012).
45.
45. S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, Phys. Lett. B 195, 216 (1987).
http://dx.doi.org/10.1016/0370-2693(87)91197-X
46.
46. S. Miyamoto and P. A. Kollman, J. Comp. Chem. 13, 952 (1992).
http://dx.doi.org/10.1002/jcc.540130805
47.
47. A. Laio and F. L. Gervasio, Rep. Prog. Phys. 71, 126601 (2008).
http://dx.doi.org/10.1088/0034-4885/71/12/126601
48.
48. D. P. Landau, S.-H. Tsai, and M. Exler, Am. J. Phys. 72, 1294 (2004).
http://dx.doi.org/10.1119/1.1707017
49.
49. M. R. Shirts and J. D. Chodera, J. Chem. Phys. 129, 124105 (2008).
http://dx.doi.org/10.1063/1.2978177
50.
50. It is a simple and well-known point, but unfortunately overlooked by the authors of Refs. 15 and 19 when they suggest that our earlier Paper I2 and its Supplement26 do not already provide relevant data at the pressures of interest.
51.
51. N. Goldenfeld, Lectures on phase transitions and the renormalization group (Westview Press, Boulder, CO, 1992).
52.
52. B. Smit and D. Frenkel, J. Chem. Phys. 94, 5663 (1991).
http://dx.doi.org/10.1063/1.460477
53.
53. H. D. Herce, A. E. Garcia, and T. Darden, J. Chem. Phys. 126, 124106 (2007).
http://dx.doi.org/10.1063/1.2714527
54.
54. E. R. Smith, J. Stat. Phys. 77, 449 (1994).
http://dx.doi.org/10.1007/BF02186852
55.
55. O. Steinhauser, Mol. Phys. 45, 335 (1982).
http://dx.doi.org/10.1080/00268978200100281
56.
56. J. L. F. Abascal and C. Vega, J. Chem. Phys. 133, 234502 (2010).
http://dx.doi.org/10.1063/1.3506860
57.
57. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).
http://dx.doi.org/10.1021/j100308a038
58.
58. N. Giovambattista, T. Loerting, B. R. Lukanov, and F. W. Starr, Sci. Rep. 2, 390 (2012).
http://dx.doi.org/10.1038/srep00390
59.
59. We are grateful to Pablo Debenedetti, Yang Liu, Jeremey Palmer, and Athanassios Panagiotopoulos for sharing data and results with us.
60.
60. Y. Liu, private communication (2012).
61.
61. J. Kolafa and J. W. Perram, Mol. Simul. 9, 351 (1992).
http://dx.doi.org/10.1080/08927029208049126
62.
62. S. D. Overduin and G. N. Patey, J. Chem. Phys. 138, 184502 (2013).
http://dx.doi.org/10.1063/1.4803868
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/21/10.1063/1.4807479
Loading
/content/aip/journal/jcp/138/21/10.1063/1.4807479
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/21/10.1063/1.4807479
2013-06-05
2016-09-27

Abstract

This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys.135, 134503 (2011) and preprint arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/21/1.4807479.html;jsessionid=HXndSrRKWVUb3frc1bCZ7F9h.x-aip-live-03?itemId=/content/aip/journal/jcp/138/21/10.1063/1.4807479&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/138/21/10.1063/1.4807479&pageURL=http://scitation.aip.org/content/aip/journal/jcp/138/21/10.1063/1.4807479'
Right1,Right2,Right3,