Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. Ma and Y. Ma, J. Chem. Phys. 137, 214504 (2012).
2. T. Schwabe, J. Chem. Phys. 138, 217101 (2013).
3. J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).
4. M. S. Gordon, M. A. Freitag, P. Bandyopadhyay, J. H. Jensen, V. Kairys, and W. J. Stevens, J. Phys. Chem. A 105, 293 (2001).
5. K. Kitaura, E. Ikeo, T. Asada, T. Nakano, and M. Uebayasi, Chem. Phys. Lett. 313, 701 (1999).
6. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).
7. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).
8. N. Rösch and M. C. Zerner, J. Phys. Chem. 98, 5817 (1994).
9. S. Canuto, K. Coutinho, and M. C. Zerner, J. Chem. Phys. 112, 7293 (2000).
10. M. A. Thompson and G. K. Schenter, J. Phys. Chem. 99, 6374 (1995).
11. J. Gao and K. Byun, Theor. Chem. Acc. 96, 151 (1997).
12. L. V. Slipchenko, J. Phys. Chem. A 114, 8824 (2010).
13. K. Sneskov, T. Schwabe, O. Christiansen, and J. Kongsted, Phys. Chem. Chem. Phys. 13, 18551 (2011).
14. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09, Revision B.01, Gaussian, Inc., Pittsburgh, PA, 2003.
15. Y.-L. Lin and J. Gao, J. Chem. Theory Comput. 3, 1484 (2007).
16. C. Amovilli and B. Mennucci, J. Phys. Chem. B 101, 1051 (1997).
17. A. Öhrn and K. Karlström, Mol. Phys. 104, 3087 (2006).
18. D. G. Fedorov and K. Kitaura, J. Chem. Phys. 131, 171106 (2009).
19. G. Fradelos and T. A. Wesolowski, J. Phys. Chem. A 115, 10018 (2011).

Data & Media loading...


Article metrics loading...



In this response to Schwabe's recent comment [J. Chem. Phys.138, 217101 (Year: 2013)10.1063/1.4807839], we discuss the validity of Schwabe's interpretation of why a large quantum mechanics (QM) region is needed to converge the quantum mechanics/molecular mechanics (QM/MM) results for aqueous benzene, which he ascribed to our insufficient electrostatic potential or neglect of polarization effect. It is shown that improving the electrostatic potential with ground-state polarizable effective fragment potential and fragment molecular orbital methods instead of simple point charge embedding still deviates much from the experimental determinations for aqueous benzene, and solvent polarization in response to the solute excitation for such a system is also very small. We then resuggest enlarging the QM region size or incorporating new exchange repulsion potentials in QM/MM calculations to account for exchange interaction between a solute and its nearby solvents for the highly accurate electronic spectral shift calculations of non-polar solutes dissolved in water.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd