1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
The exact molecular wavefunction as a product of an electronic and a nuclear wavefunction
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/22/10.1063/1.4807115
1.
1. M. Born and R. Oppenheimer, Ann. Phys. 389, 457 (1927).
http://dx.doi.org/10.1002/andp.19273892002
2.
2. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, New York, 1954).
3.
3. B. T. Sutcliffe and R. G. Woolley, J. Chem. Phys. 137, 22A544 (2012).
http://dx.doi.org/10.1063/1.4755287
4.
4. H. Köppel, W. Domcke, and L. S. Cederbaum, Adv. Chem. Phys. 57, 59 (1984).
http://dx.doi.org/10.1002/9780470142813.ch2
5.
5. D. R. Yarkony, Rev. Mod. Phys. 68, 985 (1996).
http://dx.doi.org/10.1103/RevModPhys.68.985
6.
6. The Role of Degenerate States in Chemistry, Advances in Chemical Physics Vol. 124, edited by M. Baer and G. D. Billing (Wiley, New York, 2002).
7.
7. Conical Intersections: Electronic Structure, Dynamics and Spectroscopy, edited by W. Domcke, D. R. Yarkony, and H. Köppel (World Scientific, Singapore, 2004).
8.
8. G. A. Worth and L. S. Cederbaum, Annu. Rev. Phys. Chem. 55, 127 (2004).
http://dx.doi.org/10.1146/annurev.physchem.55.091602.094335
9.
9. R. T. Pack and G. O. Hirschfelder, J. Chem. Phys. 52, 521 (1970).
http://dx.doi.org/10.1063/1.1673017
10.
10. G. Hunter, Int. J. Quantum Chem. 9, 237 (1975).
http://dx.doi.org/10.1002/qua.560090205
11.
11. G. Hunter, Int. J. Quantum Chem. 19, 755 (1981).
http://dx.doi.org/10.1002/qua.560190506
12.
12. D. M. Bishop and G. Hunter, Mol. Phys. 30, 1433 (1975).
http://dx.doi.org/10.1080/00268977500102961
13.
13. J. Czub and L. Wolniewicz, Mol. Phys. 36, 1301 (1978).
http://dx.doi.org/10.1080/00268977800102351
14.
14. P. Cassam-Chenai, Chem. Phys. Lett. 420, 354 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.01.004
15.
15. B. Sutcliffe, Theor. Chem. Acc. 127, 121 (2010).
http://dx.doi.org/10.1007/s00214-009-0594-0
16.
16. M. Moshinsky and C. Kittel, Proc. Natl. Acad. Sci. U.S.A. 60, 1110 (1968).
http://dx.doi.org/10.1073/pnas.60.4.1110
17.
17. J. Breidbach and L. S. Cederbaum, J. Chem. Phys. 118, 3983 (2003).
http://dx.doi.org/10.1063/1.1540618
18.
18. J. Zanghellini, M. Kitzler, C. Fabian, T. Brabec, and A. Scrinzi, Laser Phys. 13, 1064 (2003).
19.
19. T. Kato and H. Kono, Chem. Phys. Lett. 392, 533 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.05.106
20.
20. M. Kitzler et al., Phys. Rev. A 70, 041401 (2004).
http://dx.doi.org/10.1103/PhysRevA.70.041401
21.
21. M. Nest, T. Klamroth, and P. Saalfrank, J. Chem. Phys. 122, 124102 (2005).
http://dx.doi.org/10.1063/1.1862243
22.
22. J. Caillat et al., Phys. Rev. A 71, 012712 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.012712
23.
23. A. I. Kuleff, J. Breidbach, and L. S. Cederbaum, J. Chem. Phys. 123, 044111 (2005).
http://dx.doi.org/10.1063/1.1961341
24.
24. J. Breidbach and L. S. Cederbaum, Phys. Rev. Lett. 94, 033901 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.033901
25.
25. M. Nest, Phys. Rev. A 73, 023613 (2006).
http://dx.doi.org/10.1103/PhysRevA.73.023613
26.
26. S. Klinkusch, T. Klamroth, and P. Saalfrank, Phys. Chem. Chem. Phys. 11, 3875 (2009).
http://dx.doi.org/10.1039/b817873a
27.
27. A. D. Dutoi, L. S. Cederbaum, M. Wormit, J. H. Starcke, and A. Dreuw, J. Chem. Phys. 132, 144302 (2010).
http://dx.doi.org/10.1063/1.3353161
28.
28. A. D. Dutoi and L. S. Cederbaum, J. Phys. Chem. Lett. 2, 2300 (2011).
http://dx.doi.org/10.1021/jz200887k
29.
29. Y. Zhang, J. D. Biggs, D. Healion, N. Govind, and S. Mukamel, J. Chem. Phys. 137, 194306 (2012).
http://dx.doi.org/10.1063/1.4766356
30.
30. M. Drescher, M. Hentschel, R. Kienberger, M. Ulberacker, V. Yakoviev, A. Scrinzi, T. Westerwalbesioh, U. Kleineberg, U. Heinzmann, and F. Krausz, Nature (London) 419, 803 (2002).
http://dx.doi.org/10.1038/nature01143
31.
31. H. Niikura, F. Legare, R. Hasbani, M. Y. Ivanov, D. M. Villeneuve, and P. B. Corkum, Nature (London) 421, 826 (2003).
http://dx.doi.org/10.1038/nature01430
32.
32. H. Niikura, D. M. Villeneuve, and P. B. Corkum, Phys. Rev. Lett. 94, 083003 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.083003
33.
33. P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
http://dx.doi.org/10.1038/nphys620
34.
34. O. Smirnova, Y. Mairesse, S. Patchkovskii, N. Dudovich, D. Villeneuve, P. Corkum, and M. Y. Ivanov, Nature (London) 460, 972 (2009).
http://dx.doi.org/10.1038/nature08253
35.
35. G. Sansone, T. Pfeifer, K. Simeonidis, and A. I. Kuleff, Chem. Phys. Chem. 13, 661 (2012).
http://dx.doi.org/10.1002/cphc.201100528
36.
36. L. S. Cederbaum, J. Chem. Phys. 128, 124101 (2008).
http://dx.doi.org/10.1063/1.2895043
37.
37. A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.123002
38.
38. A. Abedi, N. T. Maitra, and E. K. U. Gross, J. Chem. Phys. 137, 22A530 (2012).
http://dx.doi.org/10.1063/1.4745836
39.
39. B. R. Johnson, J. O. Hirschfelder, and K. H. Yang, Rev. Mod. Phys. 55, 109 (1983).
http://dx.doi.org/10.1103/RevModPhys.55.109
40.
40. P. Schmelcher, L. S. Cederbaum, and U. Kappes, in Conceptual Trends in Quantum Chemistry, edited by E. S. Kryachko and J. L. Calais (Kluwer Academic Publishers, The Netherlands, 1994).
41.
41. O. Dippel, P. Schmelcher, and L. S. Cederbaum, Phys. Rev. A 49, 4415 (1994).
http://dx.doi.org/10.1103/PhysRevA.49.4415
42.
42. P. Schmelcher and L. S. Cederbaum, Comments At. Mol. Phys. D2, 123 (2000).
43.
43. V. G. Bezchastnov, P. Schmelcher, and L. S. Cederbaum, Phys. Chem. Chem. Phys. 5, 4981 (2003).
http://dx.doi.org/10.1039/b309379b
44.
44. P. Schmelcher, L. S. Cederbaum, and H.-D. Meyer, J. Phys. B 21, L445 (1988).
http://dx.doi.org/10.1088/0953-4075/21/15/005
45.
45. P. Schmelcher, L. S. Cederbaum, and H.-D. Meyer, Phys. Rev. A 38, 6066 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.6066
46.
46. T. Detmer, P. Schmelcher, and L. S. Cederbaum, J. Phys. B 28, 2903 (1995).
http://dx.doi.org/10.1088/0953-4075/28/14/012
47.
47. N. Gidopoulos and E. K. U. Gross, preprint arXiv:cond-mat/0502433.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/22/10.1063/1.4807115
Loading
Loading

Article metrics loading...

/content/aip/journal/jcp/138/22/10.1063/1.4807115
2013-06-13
2014-04-18

Abstract

The Born-Oppenheimer approximation is a basic approximation in molecular science. In this approximation, the total molecular wavefunction is written as a product of an electronic and a nuclear wavefunction.Hunter [Int. J. Quantum Chem.9, 237 (Year: 1975)]10.1002/qua.560090205 has argued that the exact total wavefunction can also be factorized as such a product. In the present work, a variational principle is introduced which shows explicitly that the total wavefunction can be exactly written as such a product. To this end, a different electronic Hamiltonian has to be defined. The Schrödinger equation for the electronic wavefunction follows from the variational ansatz and is presented. As in the Born-Oppenheimer approximation, the nuclear motion is shown to proceed in a potential which is the electronic energy. In contrast to the Born-Oppenheimer approximation, the separation of the center of mass can be carried out exactly. The electronic Hamiltonian and the equation of motion of the nuclei resulting after the exact separation of the center of mass motion are explicitly given. A simple exactly solvable model is used to illustrate some aspects of the theory.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/22/1.4807115.html;jsessionid=3dbshit1elbgc.x-aip-live-01?itemId=/content/aip/journal/jcp/138/22/10.1063/1.4807115&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The exact molecular wavefunction as a product of an electronic and a nuclear wavefunction
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/22/10.1063/1.4807115
10.1063/1.4807115
SEARCH_EXPAND_ITEM