1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
On the connection of semiclassical instanton theory with Marcus theory for electron transfer in solution
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/22/10.1063/1.4807706
1.
1. R. A. Marcus and N. Sutin, Biochim. Biophys. Acta 811, 265 (1985).
http://dx.doi.org/10.1016/0304-4173(85)90014-X
2.
2. M. H. V. Huynh and T. J. Meyer, Chem. Rev. 107, 5004 (2007).
http://dx.doi.org/10.1021/cr0500030
3.
3. H. B. Gray and J. R. Winkler, Annu. Rev. Biochem. 65, 537 (1996).
http://dx.doi.org/10.1146/annurev.bi.65.070196.002541
4.
4. L. W. Ungar, M. D. Newton, and G. A. Voth, J. Phys. Chem. B 103, 7367 (1999).
http://dx.doi.org/10.1021/jp991057e
5.
5. T. Hayashi and A. A. Stuchebrukhov, Proc. Natl. Acad. Sci. U.S.A. 107, 19157 (2010).
http://dx.doi.org/10.1073/pnas.1009181107
6.
6. O. Miyashita, M. Y. Okamura, and J. N. Onuchic, Proc. Natl. Acad. Sci. U.S.A. 102, 3558 (2005).
http://dx.doi.org/10.1073/pnas.0409600102
7.
7. J. Lin, I. A. Balabin, and D. N. Beratan, Science 310, 1311 (2005).
http://dx.doi.org/10.1126/science.1118316
8.
8. J. M. Jean, R. A. Friesner, and G. R. Fleming, J. Chem. Phys. 96, 5827 (1992).
http://dx.doi.org/10.1063/1.462858
9.
9. I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 121, 3368 (2004).
http://dx.doi.org/10.1063/1.1777575
10.
10. I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 122, 084106 (2005);
http://dx.doi.org/10.1063/1.1850093
10.I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 123, 034102 (2005).
http://dx.doi.org/10.1063/1.1954769
11.
11. T. F. Miller and D. E. Manolopoulos, J. Chem. Phys. 122, 184503 (2005);
http://dx.doi.org/10.1063/1.1893956
11.T. F. Miller and D. E. Manolopoulos, J. Chem. Phys. 123, 154504 (2005).
http://dx.doi.org/10.1063/1.2074967
12.
12. A. R. Menzeleev, N. Ananth, and T. F. Miller, J. Chem. Phys. 135, 074106 (2011).
http://dx.doi.org/10.1063/1.3624766
13.
13. R. P. Feynman, A. R. Hibbs, and D. F. Styer, Quantum Mechanics and Path Integrals: Emended Edition (McGraw-Hill, New York, 2005).
14.
14. D. Chandler and P. G. Wolynes, J. Chem. Phys. 74, 4078 (1981).
http://dx.doi.org/10.1063/1.441588
15.
15. R. Collepardo-Guevara, I. R. Craig, and D. E. Manolopoulos, J. Chem. Phys. 128, 144502 (2008).
http://dx.doi.org/10.1063/1.2883593
16.
16. T. F. Miller III, J. Chem. Phys. 129, 194502 (2008);
http://dx.doi.org/10.1063/1.3013357
16.A. R. Menzeleev, and T. F. Miller III, J. Chem. Phys. 132, 034106 (2010).
http://dx.doi.org/10.1063/1.3292576
17.
17. R. Collepardo-Guevara, Y. V. Suleimanov, and D. E. Manolopoulos, J. Chem. Phys. 130, 174713 (2009).
http://dx.doi.org/10.1063/1.3127145
18.
18. Y. V. Suleimanov, R. Collepardo-Guevara, and D. E. Manolopoulos, J. Chem. Phys. 134, 044131 (2011).
http://dx.doi.org/10.1063/1.3533275
19.
19. J. O. Richardson and S. C. Althorpe, J. Chem. Phys. 131, 214106 (2009).
http://dx.doi.org/10.1063/1.3267318
20.
20. S. Coleman, in The Whys of Subnuclear Physics, edited by A. Zichichi (Plenum, New York, 1979), pp. 805916.
21.
21. C. G. Callan and S. Coleman, Phys. Rev. D 16, 1762 (1977).
http://dx.doi.org/10.1103/PhysRevD.16.1762
22.
22. I. Affleck, Phys. Rev. Lett. 46, 388 (1981).
http://dx.doi.org/10.1103/PhysRevLett.46.388
23.
23. V. A. Benderskii, D. E. Makarov, and C. A. Wight, Adv. Chem. Phys. 88, 55 (1994).
http://dx.doi.org/10.1002/9780470141472.ch3
24.
24. G. Mil'nikov and H. Nakamura, Phys. Chem. Chem. Phys. 10, 1374 (2008).
http://dx.doi.org/10.1039/b712988b
25.
25. M. Kryvohuz, J. Chem. Phys. 134, 114103 (2011).
http://dx.doi.org/10.1063/1.3565425
26.
26. M. Kryvohuz, J. Chem. Phys. 137, 234304 (2012).
http://dx.doi.org/10.1063/1.4769195
27.
27. W. H. Miller, J. Chem. Phys. 62, 1899 (1975).
http://dx.doi.org/10.1063/1.430676
28.
28. S. C. Althorpe, J. Chem. Phys. 134, 114104 (2011).
http://dx.doi.org/10.1063/1.3563045
29.
29. W. H. Miller, Y. Zhao, M. Ceotto, and S. Yang, J. Chem. Phys. 119, 1329 (2003).
http://dx.doi.org/10.1063/1.1580110
30.
30. G. Mills, G. K. Schenter, D. E. Makarov, and H. Jónsson, Chem. Phys. Lett. 278, 91 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)00886-5
31.
31. J. C. Tully and R. K. Preston, J. Chem. Phys. 55, 562 (1971).
http://dx.doi.org/10.1063/1.1675788
32.
32. J. C. Tully, J. Chem. Phys. 93, 1061 (1990).
http://dx.doi.org/10.1063/1.459170
33.
33. J. C. Tully, Int. J. Quantum Chem. 40, 299 (1991).
http://dx.doi.org/10.1002/qua.560400830
34.
34. J. C. Tully, Faraday Discuss. 110, 407 (1998).
http://dx.doi.org/10.1039/a801824c
35.
35. X. Sun, H. Wang, and W. H. Miller, J. Chem. Phys. 109, 7064 (1998).
http://dx.doi.org/10.1063/1.477389
36.
36. W. H. Miller, J. Phys. Chem. A 113, 1405 (2009).
http://dx.doi.org/10.1021/jp809907p
37.
37. M. Thoss and G. Stock, Phys. Rev. A 59, 64 (1999).
http://dx.doi.org/10.1103/PhysRevA.59.64
38.
38. C. Zhu and H. Nakamura, J. Chem. Phys. 106, 2599 (1997).
http://dx.doi.org/10.1063/1.473364
39.
39. R. A. Marcus, J. Chem. Phys. 24, 966 (1956).
http://dx.doi.org/10.1063/1.1742723
40.
40. R. A. Marcus, Discuss. Faraday Soc. 29, 21 (1960).
http://dx.doi.org/10.1039/df9602900021
41.
41. R. A. Marcus, J. Chem. Phys. 43, 679 (1965).
http://dx.doi.org/10.1063/1.1696792
42.
42. J. S. Langer, Ann. Phys. 281, 941 (2000).
http://dx.doi.org/10.1006/aphy.2000.6025
43.
43. U. Weiss, H. Grabert, P. Hanggi, and P. Riseborough, Phys. Rev. B 35, 9535 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.9535
44.
44. P. Hanggi, U. Weiss, and P. S. Riseborough, Phys. Rev. A 34, 4558 (1986).
http://dx.doi.org/10.1103/PhysRevA.34.4558
45.
45. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets (World Scientific, Singapore, 2006).
46.
46. J. O. Richardson and S. C. Althorpe, J. Chem. Phys. 134, 054109 (2011).
http://dx.doi.org/10.1063/1.3530589
47.
47. M. Marchi and D. Chandler, J. Chem. Phys. 95, 889 (1991).
http://dx.doi.org/10.1063/1.461096
48.
48.The departure of the classical-like transmission coefficient in ring polymer rate theory from the SCI rate theory preexponential factor is measured by the parameter α(T) in Ref. 19.
49.
49. R. A. Kuharski, J. S. Bader, D. Chandler, M. Sprik, M. L. Klein, and R. W. Impey, J. Chem. Phys. 89, 3248 (1988).
http://dx.doi.org/10.1063/1.454929
50.
50. I. M. Gel'fand and A. M. Yaglom, J. Math. Phys. 1, 48 (1960).
http://dx.doi.org/10.1063/1.1703636
51.
51. G. V. Mil'nikov and H. Nakamura, J. Chem. Phys. 115, 6881 (2001).
http://dx.doi.org/10.1063/1.1406532
52.
52. W. E, W. Ren, and E. Vanden-Eijnden, J. Chem. Phys. 126, 164103 (2007).
http://dx.doi.org/10.1063/1.2720838
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/22/10.1063/1.4807706
Loading
/content/aip/journal/jcp/138/22/10.1063/1.4807706
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/22/10.1063/1.4807706
2013-06-14
2014-09-19

Abstract

We present a derivation of Marcus theory of electron transfer in solution starting from semiclassical instanton theory. The conventional semiclassical instanton theory provides an inadequate description of the electron transfer process in the inverted Marcus regime. This has been attributed to the lack of backscattering in the product region, which is represented as a semi-infinite continuum of states. For electron transfer processes in condensed phase, the electronic states in the acceptor well are bound, which violates the continuum assumption. We show by detailed analysis of the minimum action path of a model system for electron transfer that the proper tunneling coordinate is a delocalized, “bead-count” mode. The tunneling mode is analytically continued in the complex plane as in the traditional derivation. Unlike the traditional analysis where the method of steepest descent is used, the tunneling coordinate is treated as a quasi-zero mode. This feature allows including the influence of backscattering in the acceptor well and leads to the recovery of the Marcus formula for the rate of electron transfer. The results have implications on the performance of ring polymer molecular dynamics for the study of electron transfer dynamics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/22/1.4807706.html;jsessionid=2qcpitkw2i1h0.x-aip-live-02?itemId=/content/aip/journal/jcp/138/22/10.1063/1.4807706&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: On the connection of semiclassical instanton theory with Marcus theory for electron transfer in solution
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/22/10.1063/1.4807706
10.1063/1.4807706
SEARCH_EXPAND_ITEM