1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: An inexpensive, variational, almost black-box, almost size-consistent correction to configuration interaction singles for valence excited states
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/22/10.1063/1.4809571
1.
1. R. J. Cave, in Modern Electronic Structure Theory and Applications in Organic Chemistry, edited by E. R. Davidson (World Scientific, Singapore, 1997), pp. 197256.
2.
2. J. E. Subotnik, J. Chem. Phys. 135, 071104 (2011).
http://dx.doi.org/10.1063/1.3627152
3.
3. M. Head-Gordon, R. J. Rico, M. Oumi, and T. J. Lee, Chem. Phys. Lett. 219, 21 (1994).
http://dx.doi.org/10.1016/0009-2614(94)00070-0
4.
4. D. Laikov and S. Matsika, Chem. Phys. Lett. 448, 132 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.09.051
5.
5. L. Goerigk and S. Grimme, J. Chem. Phys. 132, 184103 (2010).
http://dx.doi.org/10.1063/1.3418614
6.
6. M. Head-Gordon, M. Oumi, and D. Maurice, Mol. Phys. 96, 593 (1999).
http://dx.doi.org/10.1080/00268979909482996
7.
7. D. Casanova, Y. M. Rhee, and M. Head-Gordon, J. Chem. Phys. 128, 164106 (2008).
http://dx.doi.org/10.1063/1.2907724
8.
8. Y. M. Rhee, D. Casanova, and M. Head-Gordon, J. Chem. Theory Comput. 5, 1224 (2009).
http://dx.doi.org/10.1021/ct800509z
9.
9. X. Liu, S. Fatehi, Y. Shao, B. S. Veldkamp, and J. E. Subotnik, J. Chem. Phys. 136, 161101 (2012).
http://dx.doi.org/10.1063/1.4705757
10.
10.Corroborated by B. Veldkamp, private communication (2012).
11.
11. Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O'Neill et al., Phys. Chem. Chem. Phys. 8, 3172 (2006).
http://dx.doi.org/10.1039/b517914a
12.
12. P. Pasman, F. Rob, and J. W. Verhoeven, J. Am. Chem. Soc. 104, 5127 (1982).
http://dx.doi.org/10.1021/ja00383a023
13.
13.Because the non-CT state decays radiationlessly, Verhoeven and co-workers predicted12 a crossing between the CT and non-CT states as a function of the torsional motion along the double bond of the ethylenic-CN group. VOO-CIS confirms such a crossing, and this will be presented in a subsequent paper.
14.
14. N. J. Turro, V. Ramamurthy, and J. C. Scaiano, Principles of Molecular Photochemistry (University Science Books, 2008).
15.
15. M. Barbatti, J. Paier, and H. Lischka, J. Chem. Phys. 121, 11614 (2004).
http://dx.doi.org/10.1063/1.1807378
16.
16. D. Casanova and M. Head-Gordon, J. Chem. Phys. 129, 064104 (2008).
http://dx.doi.org/10.1063/1.2965131
17.
17. H. Koch, H. Jensen, P. Jorgensen, and T. Helgaker, J. Chem. Phys. 93, 3345 (1990).
http://dx.doi.org/10.1063/1.458815
18.
18. T. Mori, W. J. Glover, M. S. Schuurman, and T. J. Martinez, J. Phys. Chem. A 116, 2808 (2012).
http://dx.doi.org/10.1021/jp2097185
19.
19. R. Crespo, H. Teramae, D. Antic, and J. Michl, Chem. Phys. 244, 203 (1999).
http://dx.doi.org/10.1016/S0301-0104(99)00117-2
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/22/10.1063/1.4809571
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a)–(d) Plot of the VOO-CIS energy correction versus the CIS(D) energy correction, with different VOO-CIS options for and C. Data points with bigger than 4 a.u. are colored red (for CT states); non-CT states are colored blue. (e) A histogram of energy corrections from both CIS(D) and VOO-CIS-G(12, 2). (f) Plot of the VOO-CIS-G(12, 2) versus . The inset is the PYCM structure. All the green lines are = for reference. Note that all VOO-CIS combinations find a clear separation between CT and non-CT states, while CIS(D) does not.

Image of FIG. 2.

Click to view

FIG. 2.

(a)–(d) Plot of VOO-CIS energies for ethylene along the torsional angle τ, with different VOO-CIS options. (d) The SF-XCIS active-space result (in red). (e) CIS/E and CIS(D)/MP2 data. (f) The VOO-CIS-X(, 3) energy as a function of at τ = 80°, compared with CISD data (x's). All energies are relative to the ground state at τ = 60° in (d) (black solid dot). Note that VOO-CIS is able to find the low-lying doubly excited state.

Tables

Generic image for table

Click to view

Table I.

For each VOO-CIS-C(, ) option, here are the additional subspaces included along with the CIS states { }. , , , = {1, 2 ⋯ }.

Loading

Article metrics loading...

/content/aip/journal/jcp/138/22/10.1063/1.4809571
2013-06-14
2014-04-23

Abstract

Configuration interaction singles (CIS) describe excited electronic states only qualitatively and improvements are imperative as a means of recovering chemical accuracy. In particular, variational improvements would be ideal to account for state crossings and electronic relaxation. To accomplish such an objective, in this communication we present a new suite of algorithms, abbreviated VOO-CIS for variationally orbital optimized CIS. We show below that VOO-CIS yields a uniform improvement to CIS, rebalancing the energies of CT states versus non-CT states within the same framework. Furthermore, VOO-CIS finds energetic corrections for CT states that are even larger than those predicted by CIS(D). The computational cost of VOO-CIS depends strongly on the number of excited states requested (), but otherwise should be proportional to the cost of CIS itself.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/22/1.4809571.html;jsessionid=6lrn337k4c2k9.x-aip-live-06?itemId=/content/aip/journal/jcp/138/22/10.1063/1.4809571&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: An inexpensive, variational, almost black-box, almost size-consistent correction to configuration interaction singles for valence excited states
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/22/10.1063/1.4809571
10.1063/1.4809571
SEARCH_EXPAND_ITEM