1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/22/10.1063/1.4810876
1.
1. C. L. Evans, X. Y. Xu, S. Kesari, X. S. Xie, S. T. C. Wong, and G. S. Young, Opt. Express 15, 12076 (2007).
http://dx.doi.org/10.1364/OE.15.012076
2.
2. J. X. Cheng, Y. K. Jia, G. F. Zheng, and X. S. Xie, Biophys. J. 83, 502 (2002).
http://dx.doi.org/10.1016/S0006-3495(02)75186-2
3.
3. M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, Appl. Phys. Lett. 99, 101109 (2011).
http://dx.doi.org/10.1063/1.3636436
4.
4. F. Vestin and P. E. Bengtsson, Proc. Combust. Inst. 32, 847 (2009).
http://dx.doi.org/10.1016/j.proci.2008.06.027
5.
5. P. R. Regnier and J. P. E. Taran, Appl. Phys. Lett. 23, 240 (1973).
http://dx.doi.org/10.1063/1.1654873
6.
6. I. R. Beattie, T. R. Gilson, and D. A. Greenhalgh, Nature (London) 276, 378 (1978).
http://dx.doi.org/10.1038/276378a0
7.
7. W. B. Roh, P. W. Schreiber, and J. P. E. Taran, Appl. Phys. Lett. 29, 174 (1976).
http://dx.doi.org/10.1063/1.89013
8.
8. D. V. Murphy and R. K. Chang, Opt. Lett. 6, 233 (1981).
http://dx.doi.org/10.1364/OL.6.000233
9.
9. M. Alden, P. E. Bengtsson, and H. Edner, Appl. Opt. 25, 4493 (1986).
http://dx.doi.org/10.1364/AO.25.004493
10.
10. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach Publishers, 1996).
11.
11. A. Bohlin, E. Nordström, H. Carlsson, X.-S. Bai, and P.-E. Bengtsson, Proc. Combust. Inst. 34, 3629 (2013).
http://dx.doi.org/10.1016/j.proci.2012.05.016
12.
12. R. A. Patton, K. N. Gabet, N. Jiang, W. R. Lempert, and J. A. Sutton, Appl. Phys. B: Lasers Opt. 108, 377 (2012).
http://dx.doi.org/10.1007/s00340-012-4880-5
13.
13. R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, J. Chem. Phys. 127, 044316 (2007).
http://dx.doi.org/10.1063/1.2751184
14.
14. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, Science 316, 265 (2007).
http://dx.doi.org/10.1126/science.1139055
15.
15. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, Opt. Lett. 35, 2430 (2010).
http://dx.doi.org/10.1364/OL.35.002430
16.
16. C. C. Hayden and D. W. Chandler, J. Chem. Phys. 103, 10465 (1995).
http://dx.doi.org/10.1063/1.469896
17.
17. W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, Appl. Phys. Lett. 97, 081112 (2010).
http://dx.doi.org/10.1063/1.3483871
18.
18. J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, J. Chem. Phys. 135, 201104 (2011).
http://dx.doi.org/10.1063/1.3665932
19.
19. A. Bohlin, E. Nordstrom, B. D. Patterson, P.-E. Bengtsson, and C. J. Kliewer, J. Chem. Phys. 137, 074302 (2012).
http://dx.doi.org/10.1063/1.4742915
20.
20. C. J. Kliewer, A. Bohlin, E. Nordstrom, B. D. Patterson, P. E. Bengtsson, and T. B. Settersten, Appl. Phys. B: Lasers Opt. 108, 419 (2012).
http://dx.doi.org/10.1007/s00340-012-5037-2
21.
21. Y. Gao, A. Bohlin, T. Seeger, P.-E. Bengtsson, and C. J. Kliewer, Proc. Combust. Inst. 34, 3637 (2013).
http://dx.doi.org/10.1016/j.proci.2012.05.010
22.
22. T. Seeger, J. Kiefer, Y. Gao, B. Patterson, C. Kliewer, and T. Settersten, Opt. Lett. 35, 2040 (2010).
http://dx.doi.org/10.1364/OL.35.002040
23.
23. C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, Proc. Combust. Inst. 33, 831 (2011).
http://dx.doi.org/10.1016/j.proci.2010.05.067
24.
24. R. S. Barlow, Proc. Combust. Inst. 31, 49 (2007).
http://dx.doi.org/10.1016/j.proci.2006.08.122
25.
25. A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
http://dx.doi.org/10.1063/1.90070
26.
26. A. Bohlin, B. D. Patterson, and C. J. Kliewer, J. Chem. Phys. 138, 081102 (2013).
http://dx.doi.org/10.1063/1.4793556
27.
27. A. Satija and R. P. Lucht, Opt. Lett. 38, 1340 (2013).
http://dx.doi.org/10.1364/OL.38.001340
28.
28.See supplementary material at http://dx.doi.org/10.1063/1.4810876 for both experimental details and calculations of the phase-matching limited excitation bandwidth. [Supplementary Material]
29.
29. B. K. Ford, M. R. Descour, and R. M. Lynch, Opt. Express 9, 444 (2001).
http://dx.doi.org/10.1364/OE.9.000444
30.
30. A. Bohlin, P. E. Bengtsson, and M. Marrocco, J. Raman Spectrosc. 42, 1843 (2011).
http://dx.doi.org/10.1002/jrs.2869
31.
31. S. P. Kearney and D. J. Scoglietti, Opt. Lett. 38, 833 (2013).
http://dx.doi.org/10.1364/OL.38.000833
32.
32. J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, Opt. Express 19, 15627 (2011).
http://dx.doi.org/10.1364/OE.19.015627
33.
33. A. D. Cutler and G. Magnotti, J. Raman Spectrosc. 42, 1949 (2011).
http://dx.doi.org/10.1002/jrs.2948
34.
34. A. Braeuer, S. R. Engel, R. F. Hankel, and A. Leipertz, Opt. Lett. 34, 3122 (2009).
http://dx.doi.org/10.1364/OL.34.003122
35.
35. A. Krishnan, E. Dujardin, M. M. J. Treacy, J. Hugdahl, S. Lynum, and T. W. Ebbesen, Nature (London) 388, 451 (1997).
http://dx.doi.org/10.1038/41284
36.
36. S. L. Fiedler, S. Izvekov, and A. Violi, Carbon 45, 1786 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.05.001
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/22/10.1063/1.4810876
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The experimental setup for the 2D-CARS measurements displaying the 2D imaging spectrometer system and the alignment of the laser beams. The details of the time-synchronized fs and ps laser systems employed are described in the supplementary material. 28 The structured probe beam is formed by passing the probe beam through a mask (4 mm × 4 mm) which is relay imaged to the crossing of the pump/Stokes beam with a 2:1 magnification to increase the probe pulse irradiance. In light blue is the 2D-CARS image from the resolved = 8 rotational transition. The optical detection system consists of a single “effective” lens used in combination with a diffraction grating to disperse the 2D-CARS light. L1, L2, and L3 – spherical lenses with f1 = 1 m, f2 = 0.5 m, f3 = 0.75 m, respectively. M – mirror, HWP – half wave plate, CL – cylindrical lens (f = 1 m / 0.3 m), BD – beam dump, PBS – polarizing beam splitter cube, SP – short wave pass filter, G – grating (3600 l/mm), CCD – charge coupled device camera, RF – 100 MHz radio frequency source to which both the fs and ps seed lasers are phase-locked.

Image of FIG. 2.

Click to view

FIG. 2.

(a) 2D-CARS single-shot spectra recorded in pure N at room temperature. In the second row of 2D spectra, the center structure of the mask is removed to provide a defined 2D imaging field. (b) Recorded spectra in pure N and N in a mixture with O (Air), detected with a larger dispersion, are shown to indicate the potential for separately analyzing the 2D spatial field in mixtures of species. A vector diagram is used to orientate each spatial location of the measured 2D field. The image consists of ∼125 × 120 pixels which give about 15 000 spectra provided by a single-laser-shot.

Image of FIG. 3.

Click to view

FIG. 3.

Extracted rotational CARS spectra taken from a single height (Y) in the image from Fig. 2(a) . The spectra originate from a specific height in the probed 2D plane and cover 20 mm (X) of space at this height. From the intensity spectra, the average temperature was evaluated to be 299 K with a standard deviation of 1.4%, this yields an accuracy error of 1.5%. There are 125 such pixel rows in the single laser shot 2D-CARS image, which each provide another set of data like that presented in this figure.

Loading

Article metrics loading...

/content/aip/journal/jcp/138/22/10.1063/1.4810876
2013-06-12
2014-04-16

Abstract

Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15 000 spatially correlated rotational CARS spectra in N and air over a 2D field of 40 mm2.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/22/1.4810876.html;jsessionid=i8hqmipu9veg.x-aip-live-01?itemId=/content/aip/journal/jcp/138/22/10.1063/1.4810876&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/22/10.1063/1.4810876
10.1063/1.4810876
SEARCH_EXPAND_ITEM