1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/22/10.1063/1.4810876
1.
1. C. L. Evans, X. Y. Xu, S. Kesari, X. S. Xie, S. T. C. Wong, and G. S. Young, Opt. Express 15, 12076 (2007).
http://dx.doi.org/10.1364/OE.15.012076
2.
2. J. X. Cheng, Y. K. Jia, G. F. Zheng, and X. S. Xie, Biophys. J. 83, 502 (2002).
http://dx.doi.org/10.1016/S0006-3495(02)75186-2
3.
3. M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, Appl. Phys. Lett. 99, 101109 (2011).
http://dx.doi.org/10.1063/1.3636436
4.
4. F. Vestin and P. E. Bengtsson, Proc. Combust. Inst. 32, 847 (2009).
http://dx.doi.org/10.1016/j.proci.2008.06.027
5.
5. P. R. Regnier and J. P. E. Taran, Appl. Phys. Lett. 23, 240 (1973).
http://dx.doi.org/10.1063/1.1654873
6.
6. I. R. Beattie, T. R. Gilson, and D. A. Greenhalgh, Nature (London) 276, 378 (1978).
http://dx.doi.org/10.1038/276378a0
7.
7. W. B. Roh, P. W. Schreiber, and J. P. E. Taran, Appl. Phys. Lett. 29, 174 (1976).
http://dx.doi.org/10.1063/1.89013
8.
8. D. V. Murphy and R. K. Chang, Opt. Lett. 6, 233 (1981).
http://dx.doi.org/10.1364/OL.6.000233
9.
9. M. Alden, P. E. Bengtsson, and H. Edner, Appl. Opt. 25, 4493 (1986).
http://dx.doi.org/10.1364/AO.25.004493
10.
10. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach Publishers, 1996).
11.
11. A. Bohlin, E. Nordström, H. Carlsson, X.-S. Bai, and P.-E. Bengtsson, Proc. Combust. Inst. 34, 3629 (2013).
http://dx.doi.org/10.1016/j.proci.2012.05.016
12.
12. R. A. Patton, K. N. Gabet, N. Jiang, W. R. Lempert, and J. A. Sutton, Appl. Phys. B: Lasers Opt. 108, 377 (2012).
http://dx.doi.org/10.1007/s00340-012-4880-5
13.
13. R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, J. Chem. Phys. 127, 044316 (2007).
http://dx.doi.org/10.1063/1.2751184
14.
14. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, Science 316, 265 (2007).
http://dx.doi.org/10.1126/science.1139055
15.
15. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, Opt. Lett. 35, 2430 (2010).
http://dx.doi.org/10.1364/OL.35.002430
16.
16. C. C. Hayden and D. W. Chandler, J. Chem. Phys. 103, 10465 (1995).
http://dx.doi.org/10.1063/1.469896
17.
17. W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, Appl. Phys. Lett. 97, 081112 (2010).
http://dx.doi.org/10.1063/1.3483871
18.
18. J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, J. Chem. Phys. 135, 201104 (2011).
http://dx.doi.org/10.1063/1.3665932
19.
19. A. Bohlin, E. Nordstrom, B. D. Patterson, P.-E. Bengtsson, and C. J. Kliewer, J. Chem. Phys. 137, 074302 (2012).
http://dx.doi.org/10.1063/1.4742915
20.
20. C. J. Kliewer, A. Bohlin, E. Nordstrom, B. D. Patterson, P. E. Bengtsson, and T. B. Settersten, Appl. Phys. B: Lasers Opt. 108, 419 (2012).
http://dx.doi.org/10.1007/s00340-012-5037-2
21.
21. Y. Gao, A. Bohlin, T. Seeger, P.-E. Bengtsson, and C. J. Kliewer, Proc. Combust. Inst. 34, 3637 (2013).
http://dx.doi.org/10.1016/j.proci.2012.05.010
22.
22. T. Seeger, J. Kiefer, Y. Gao, B. Patterson, C. Kliewer, and T. Settersten, Opt. Lett. 35, 2040 (2010).
http://dx.doi.org/10.1364/OL.35.002040
23.
23. C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, Proc. Combust. Inst. 33, 831 (2011).
http://dx.doi.org/10.1016/j.proci.2010.05.067
24.
24. R. S. Barlow, Proc. Combust. Inst. 31, 49 (2007).
http://dx.doi.org/10.1016/j.proci.2006.08.122
25.
25. A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
http://dx.doi.org/10.1063/1.90070
26.
26. A. Bohlin, B. D. Patterson, and C. J. Kliewer, J. Chem. Phys. 138, 081102 (2013).
http://dx.doi.org/10.1063/1.4793556
27.
27. A. Satija and R. P. Lucht, Opt. Lett. 38, 1340 (2013).
http://dx.doi.org/10.1364/OL.38.001340
28.
28.See supplementary material at http://dx.doi.org/10.1063/1.4810876 for both experimental details and calculations of the phase-matching limited excitation bandwidth. [Supplementary Material]
29.
29. B. K. Ford, M. R. Descour, and R. M. Lynch, Opt. Express 9, 444 (2001).
http://dx.doi.org/10.1364/OE.9.000444
30.
30. A. Bohlin, P. E. Bengtsson, and M. Marrocco, J. Raman Spectrosc. 42, 1843 (2011).
http://dx.doi.org/10.1002/jrs.2869
31.
31. S. P. Kearney and D. J. Scoglietti, Opt. Lett. 38, 833 (2013).
http://dx.doi.org/10.1364/OL.38.000833
32.
32. J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, Opt. Express 19, 15627 (2011).
http://dx.doi.org/10.1364/OE.19.015627
33.
33. A. D. Cutler and G. Magnotti, J. Raman Spectrosc. 42, 1949 (2011).
http://dx.doi.org/10.1002/jrs.2948
34.
34. A. Braeuer, S. R. Engel, R. F. Hankel, and A. Leipertz, Opt. Lett. 34, 3122 (2009).
http://dx.doi.org/10.1364/OL.34.003122
35.
35. A. Krishnan, E. Dujardin, M. M. J. Treacy, J. Hugdahl, S. Lynum, and T. W. Ebbesen, Nature (London) 388, 451 (1997).
http://dx.doi.org/10.1038/41284
36.
36. S. L. Fiedler, S. Izvekov, and A. Violi, Carbon 45, 1786 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.05.001
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/22/10.1063/1.4810876
Loading
/content/aip/journal/jcp/138/22/10.1063/1.4810876
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/22/10.1063/1.4810876
2013-06-12
2014-12-20

Abstract

Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15 000 spatially correlated rotational CARS spectra in N and air over a 2D field of 40 mm2.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/22/1.4810876.html;jsessionid=4gpku20qud4wl.x-aip-live-06?itemId=/content/aip/journal/jcp/138/22/10.1063/1.4810876&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/22/10.1063/1.4810876
10.1063/1.4810876
SEARCH_EXPAND_ITEM