1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: An accurate global potential energy surface for the OH + CO → H + CO2 reaction using neural networks
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/22/10.1063/1.4811109
1.
1. B. J. Finlayson-Pitts and J. N. Pitts Jr., Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications (Academic Press, San Diego, 2000).
2.
2. J. A. Miller, R. J. Kee, and C. K. Westbrook, Annu. Rev. Phys. Chem. 41, 345 (1990).
http://dx.doi.org/10.1146/annurev.pc.41.100190.002021
3.
3. A. R. Ravishankara and R. L. Thompson, Chem. Phys. Lett. 99, 377 (1983).
http://dx.doi.org/10.1016/0009-2614(83)80158-4
4.
4. M. J. Frost, P. Sharkey, and I. W. M. Smith, Faraday Discuss. Chem. Soc. 91, 305 (1991).
http://dx.doi.org/10.1039/dc9919100305
5.
5. D. M. Golden, G. P. Smith, A. B. McEwen, C. L. Yu, B. Eiteneer, M. Frenklach, G. L. Vaghjiani, A. R. Ravishankara, and F. P. Tully, J. Phys. Chem. A 102, 8598 (1998).
http://dx.doi.org/10.1021/jp982110m
6.
6. M. Alagia, N. Balucani, P. Casavecchia, D. Stranges, and G. G. Volpi, J. Chem. Phys. 98, 8341 (1993).
http://dx.doi.org/10.1063/1.464540
7.
7. S. Liu, X. Xu, and D. H. Zhang, J. Chem. Phys. 135, 141108 (2011).
http://dx.doi.org/10.1063/1.3653787
8.
8. S. Liu, X. Xu, and D. H. Zhang, Theor. Chem. Acc. 131, 1068 (2012).
http://dx.doi.org/10.1007/s00214-011-1068-8
9.
9. G. C. Schatz, M. S. Fitzcharles, and L. B. Harding, Faraday Discuss. Chem. Soc. 84, 359 (1987).
http://dx.doi.org/10.1039/dc9878400359
10.
10. M. J. Lakin, D. Troya, G. C. Schatz, and L. B. Harding, J. Chem. Phys. 119, 5848 (2003).
http://dx.doi.org/10.1063/1.1602061
11.
11. J. Li, Y. Wang, B. Jiang, J. Ma, R. Dawes, D. Xie, J. M. Bowman, and H. Guo, J. Chem. Phys. 136, 041103 (2012).
http://dx.doi.org/10.1063/1.3680256
12.
12. J. Li, C. Xie, J. Ma, Y. Wang, R. Dawes, D. Xie, J. M. Bowman, and H. Guo, J. Phys. Chem. A 116, 5057 (2012).
http://dx.doi.org/10.1021/jp302278r
13.
13. J. Ma, J. Li, and H. Guo, J. Phys. Chem. Lett. 3, 2482 (2012).
http://dx.doi.org/10.1021/jz301064w
14.
14. K. Hornik, M. Stinchcombe, and H. White, Neural Networks 2, 359 (1989).
http://dx.doi.org/10.1016/0893-6080(89)90020-8
15.
15. T. B. Blank, S. D. Brown, A. W. Calhoun, and D. J. Doren, J. Chem. Phys. 103, 4129 (1995).
http://dx.doi.org/10.1063/1.469597
16.
16. D. F. R. Brown, M. N. Gibbs, and D. C. Clary, J. Chem. Phys. 105, 7597 (1996).
http://dx.doi.org/10.1063/1.472596
17.
17. L. M. Raff, M. Malshe, M. Hagan, D. I. Doughan, M. G. Rockley, and R. Komanduri, J. Chem. Phys. 122, 084104 (2005).
http://dx.doi.org/10.1063/1.1850458
18.
18. S. Manzhos, X. Wang, R. Dawes, and T. Carrington Jr., J. Phys. Chem. A 110, 5295 (2006).
http://dx.doi.org/10.1021/jp055253z
19.
19. J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.146401
20.
20. M. G. Darley, C. M. Handley, and P. L. A. Popelier, J. Chem. Theory Comput. 4, 1435 (2008).
http://dx.doi.org/10.1021/ct800166r
21.
21. C. M. Handley and P. L. A. Popelier, J. Phys. Chem. A 114, 3371 (2010).
http://dx.doi.org/10.1021/jp9105585
22.
22. J. Behler, Phys. Chem. Chem. Phys. 13, 17930 (2011).
http://dx.doi.org/10.1039/c1cp21668f
23.
23. R. Lionel, K. Ranga, and H. Martin, Neural Networks in Chemical Reaction Dynamics (Oxford University Press, New York, 2012).
24.
24. J. Chen, X. Xu, X. Xu, and D. H. Zhang, J. Chem. Phys. 138, 154301 (2013).
http://dx.doi.org/10.1063/1.4801658
25.
25. M. H. Yang, D. H. Zhang, M. A. Collins, and S. Y. Lee, J. Chem. Phys. 115, 174 (2001).
http://dx.doi.org/10.1063/1.1372335
26.
26. C. Xiao, X. Xu, S. Liu, T. Wang, W. Dong, T. Yang, Z. Sun, D. Dai, X. Xu, D. H. Zhang, and X. Yang, Science 333, 440 (2011).
http://dx.doi.org/10.1126/science.1205770
27.
27. D. K. Agrafiotis, W. Cedeño, and V. S. Lobanov, J. Chem. Inf. Comput. Sci. 42, 903 (2002).
http://dx.doi.org/10.1021/ci0203702
28.
28.See supplementary material at http://dx.doi.org/10.1063/1.4811109 for the additional potential cuts for various molecular configurations, the program and input data files for the PES. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/22/10.1063/1.4811109
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Comparison of total reaction probabilities on two sets of PESs averaged over three fittings and (b) comparison of total reaction probabilities on one of the sets shown in (a) and a PES averaged over three fitting based on 10% less data points.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Complex formation probabilities as a function of collision energy for the ground initial state of the OH + CO reaction on the LTSH, CCSD-1/d and present NN PES; (b) total reaction probability on these three PES; and (c) probability for the complex decaying into product channel H+CO as a function of collision energy.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Fitting error of CCSD-1/d and NN PES for the 10% testing points of neural network fitting; (b) a one-dimensional potential cut through the entrance saddle point by varying the distance between OH and CO on the present, CCSD-1/d and CCSD-2/d PESs, together with the corresponding energies; (c) same as (b) except for connecting the and minimums of the system by rotating the dihedral angle; and (d) same as (b) except through the exit saddle point by rotating the dihedral angle. The bond distances are in atom unit (bohr).

Image of FIG. 4.

Click to view

FIG. 4.

CS rate constant for the ground initial state for the title reaction compared with the QM results on the CCSD-1/d PES and experimental data of Ravishankara and Thompson, Frost , and Golden

Loading

Article metrics loading...

/content/aip/journal/jcp/138/22/10.1063/1.4811109
2013-06-14
2014-04-19

Abstract

We report a new global potential energy surface of the HOCO system based on the F12 correction of unrestricted coupled-cluster with singles doubles and approximative triples using the augmented correlation-consistent polarized valence triple-zeta basis set (UCCSD(T)-F12/AVTZ), fitted by using the neural networks. Quantum dynamics calculations confirmed the satisfactory convergence of surface with respect to the number of data points and fitting process. It is found that the total reaction probabilities and complex-formation probabilities obtained on the present surface differ considerably with those obtained on the potential energy surface recently reported by Li et al. [J. Chem. Phys.136, 041103 (Year: 2012)]10.1063/1.3680256. Various comparisons revealed that the present surface is substantially more accurate than that surface, representing the best available potential energy surface for this benchmark complex-forming four-atom system.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/22/1.4811109.html;jsessionid=2epf70a9tyab8.x-aip-live-06?itemId=/content/aip/journal/jcp/138/22/10.1063/1.4811109&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: An accurate global potential energy surface for the OH + CO → H + CO2 reaction using neural networks
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/22/10.1063/1.4811109
10.1063/1.4811109
SEARCH_EXPAND_ITEM