1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Full dimensional quantum rate coefficients and kinetic isotope effects from ring polymer molecular dynamics for a seven-atom reaction OH + CH4 → CH3 + H2O
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/22/10.1063/1.4811329
1.
1. S. C. Althorpe and D. C. Clary, Annu. Rev. Phys. Chem. 54, 493 (2003).
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103750
2.
2. A. Fernández-Ramos, J. A. Miller, S. J. Klippenstein, and D. G. Truhlar, Chem. Rev. 106, 4518 (2006).
http://dx.doi.org/10.1021/cr050205w
3.
3. M. J. Gillan, Phys. Rev. Lett. 58, 563 (1987);
http://dx.doi.org/10.1103/PhysRevLett.58.563
3.M. J. Gillan, J. Phys. C 20, 3621 (1987).
http://dx.doi.org/10.1088/0022-3719/20/24/005
4.
4. G. A. Voth, D. Chandler, and W. H. Miller, J. Chem. Phys. 91, 7749 (1989).
http://dx.doi.org/10.1063/1.457242
5.
5. N. F. Hansen and H. C. Andersen, J. Chem. Phys. 101, 6032 (1994);
http://dx.doi.org/10.1063/1.467318
5.N. F. Hansen and H. C. Andersen, J. Phys. Chem. 100, 1137 (1996).
http://dx.doi.org/10.1021/jp951605y
6.
6. W. H. Miller, Y. Zhao, M. Ceotto, and S. Yang, J. Chem. Phys. 119, 1329 (2003).
http://dx.doi.org/10.1063/1.1580110
7.
7. W. H. Miller, J. Chem. Phys. 62, 1899 (1975).
http://dx.doi.org/10.1063/1.430676
8.
8. I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 122, 084106 (2005);
http://dx.doi.org/10.1063/1.1850093
8.I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 123, 034102 (2005).
http://dx.doi.org/10.1063/1.1954769
9.
9. S. Habershon, D. E. Manolopoulos, T. E. Markland, and T. F. Miller, Annu. Rev. Phys. Chem. 64, 387 (2013).
http://dx.doi.org/10.1146/annurev-physchem-040412-110122
10.
10. D. Chandler and P. G. Wolynes, J. Chem. Phys. 74, 4078 (1981).
http://dx.doi.org/10.1063/1.441588
11.
11. R. Collepardo-Guevara, Yu. V. Suleimanov, and D. E. Manolopoulos, J. Chem. Phys. 130, 174713 (2009).
http://dx.doi.org/10.1063/1.3127145
12.
12. R. Pérez de Tudela, F. J. Aoiz, Y. V. Suleimanov, and D. E. Manolopoulos, J. Phys. Chem. Lett. 3, 493 (2012).
http://dx.doi.org/10.1021/jz201702q
13.
13. Y. V. Suleimanov, R. Pérez de Tudela, P. G. Jambrina, J. F. Castillo, V. Sáez-Rábanos, D. E. Manolopoulos, and F. J. Aoiz, Phys. Chem. Chem. Phys. 15, 3655 (2013).
http://dx.doi.org/10.1039/c2cp44364c
14.
14. Y. V. Suleimanov, R. Collepardo-Guevara, and D. E. Manolopoulos, J. Chem. Phys. 134, 044131 (2011).
http://dx.doi.org/10.1063/1.3533275
15.
15. Y. Li, Y. Suleymanov, M.-H. Yang, W. H. Green, and H. Guo, J. Chem. Phys. 138, 094307 (2013).
http://dx.doi.org/10.1063/1.4793394
16.
16. Y. Li, Y. Suleymanov, M.-H. Yang, W. H. Green, and H. Guo, J. Phys. Chem. Lett. 4, 48 (2013).
http://dx.doi.org/10.1021/jz3019513
17.
17. N. Boekelheide, R. Salomón-Ferrer, and T. F. Miller III, Proc. Natl. Acad. Sci. U.S.A. 108, 16159 (2011).
http://dx.doi.org/10.1073/pnas.1106397108
18.
18. A. R. Menzeleev, N. Ananth, and T. F. Miller III, J. Chem. Phys. 135, 074106 (2011).
http://dx.doi.org/10.1063/1.3624766
19.
19. J. S. Kretchmer and T. F. Miller III, J. Chem. Phys. 138, 134109 (2013).
http://dx.doi.org/10.1063/1.4797462
20.
20. J. O. Richardson and S. C. Althorpe, J. Chem. Phys. 131, 214106 (2009).
http://dx.doi.org/10.1063/1.3267318
21.
21. S. J. Klippenstein and W. D. Allen, Ber. Bunsenges. Phys. Chem. 101, 423 (1997).
http://dx.doi.org/10.1002/bbpc.19971010315
22.
22. S. J. Klippenstein, Y. Georgievskii, and L. B. Harding, J. Phys. Chem. A 115, 14370 (2011).
http://dx.doi.org/10.1021/jp208347j
23.
23. H. D. Meyer, U. Manthe, and L. S. Cederbaum, Chem. Phys. Lett. 165, 73 (1990).
http://dx.doi.org/10.1016/0009-2614(90)87014-I
24.
24. Y. V. Suleimanov, J. W. Allen, and W. H. Green, Comput. Phys. Commun. 184, 833 (2013).
http://dx.doi.org/10.1016/j.cpc.2012.10.017
25.
25. R. P. Wayne, Chemistry of Atmospheres, 3rd ed. (Oxford University Press, 2000).
26.
26. S. M. Hwang, S.-O. Ryu, K. J. De Witt, and M. J. Rabinowitz, J. Phys. Chem. A 103, 5949 (1999).
http://dx.doi.org/10.1021/jp990998o
27.
27. D. L. Baulch, C. T. Bowman, C. J. Cobos, R. A. Cox, T. Just, J. A. Kerr, M. J. Pilling, D. Stocker, J. Troe, W. Tsang, R. W. Walker, and J. Warnatz, J. Phys. Chem. Ref. Data 34, 757 (2005).
http://dx.doi.org/10.1063/1.1748524
28.
28. S. Gordon and W. A. Mulac, Proc. Symp. Chem. Kinet. Data Upper Lower Atmos. 1, 289 (1975).
29.
29. J. R. Dunlop and F. P. Tully, J. Phys. Chem. 97, 11148 (1993).
http://dx.doi.org/10.1021/j100145a003
30.
30. T. Gierczak, R. K. Talukdar, S. C. Herndon, G. L. Vaghjiani, and A. R. Ravishankara, J. Phys. Chem. A 101, 3125 (1997).
http://dx.doi.org/10.1021/jp963892r
31.
31. V. S. Melissas and D. G. Truhlar, J. Chem. Phys. 99, 3542 (1993);
http://dx.doi.org/10.1063/1.466230
31.V. S. Melissas and D. G. Truhlar, J. Chem. Phys. 99, 1013 (1993).
http://dx.doi.org/10.1063/1.465401
32.
32. L. Masgrau, A. Gonzalez-Lafont, and J. M. Lluch, J. Chem. Phys. 114, 2154 (2001);
http://dx.doi.org/10.1063/1.1335655
32.L. Masgrau, A. Gonzalez-Lafont, and J. M. Lluch, J. Chem. Phys. 115, 4515 (2001);
http://dx.doi.org/10.1063/1.1389848
32.L. Masgrau, A. Gonzalez-Lafont, and J. M. Lluch, Theor. Chem. Acc. 108, 38 (2002).
http://dx.doi.org/10.1007/s00214-002-0357-7
33.
33. J. Espinosa-García and J. C. Corchado, J. Chem. Phys. 112, 5731 (2000).
http://dx.doi.org/10.1063/1.481148
34.
34. W. Wang and Y. Zhao, J. Chem. Phys. 137, 214306 (2012).
http://dx.doi.org/10.1063/1.4768874
35.
35. M. W. Chase Jr., C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables (National Bureau of Standards, Washington, D.C., 1985), Vol. 14.
36.
36. J. Zheng, S. Zhang, B. J. Lynch, J. C. Corchado, Y.-Y. Chuang, P. L. Fast, W.-P. Hu, Y.-P. Liu, G. C. Lynch, K. A. Nguyen, C. F. Jackels, A. F. Ramos, B. A. Ellingson, V. S. Melissas, J. Villà, I. Rossi, E. L. Coitiño, J. Pu, T. V. Albu, R. Steckler, B. C. Garrett, A. D. Isaacson, and D. G. Truhlar, POLYRATE, 2010-A; 2010.
37.
37. G. L. Vaghjiani and A. R. Ravishankara, Nature (London) 350, 406 (1991).
http://dx.doi.org/10.1038/350406a0
38.
38. P. Sharkey and I. W. M. Smith, J. Chem. Soc., Faraday Trans. 89, 631 (1993).
http://dx.doi.org/10.1039/ft9938900631
39.
39. M. G. Bryukov, V. D. Knyazev, S. M. Lomnicki, C. A. McFerrin, and B. Dellinger, J. Phys. Chem. A 108, 10464 (2004).
http://dx.doi.org/10.1021/jp047340h
40.
40. C. Venkataraman and W. H. Miller, J. Phys. Chem. A 108, 3035 (2004).
http://dx.doi.org/10.1021/jp031112q
41.
41. T. Yamamoto and W. H. Miller, J. Chem. Phys. 120, 3086 (2004).
http://dx.doi.org/10.1063/1.1641005
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/22/10.1063/1.4811329
Loading
/content/aip/journal/jcp/138/22/10.1063/1.4811329
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/22/10.1063/1.4811329
2013-06-12
2014-07-29

Abstract

The kinetic isotope effect (KIE) of the seven-atom reactions OH + CH → CH + HO and OH + CD → CD + HDO over the temperature range 200–1000 K is investigated using ring polymer molecular dynamics (RPMD) on a full-dimensional potential energy surface. A comparison of RPMD with previous theoretical results obtained using transition state theory shows that RPMD is a more reliable theoretical approach for systems with more than 6 atoms, which provides a predictable level of accuracy. We show that the success of RPMD is a direct result of its independence of the choice of transition state dividing surface, a feature that is not shared by any of the transition state theory-based methods. Our results demonstrate that RPMD is a prospective method for studies of KIEs for polyatomic reactions for which rigorous quantum mechanical calculations are currently impossible.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/22/1.4811329.html;jsessionid=50v6h6cf4mnha.x-aip-live-06?itemId=/content/aip/journal/jcp/138/22/10.1063/1.4811329&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Full dimensional quantum rate coefficients and kinetic isotope effects from ring polymer molecular dynamics for a seven-atom reaction OH + CH4 → CH3 + H2O
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/22/10.1063/1.4811329
10.1063/1.4811329
SEARCH_EXPAND_ITEM