1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Relative efficacy of vibrational vs. translational excitation in promoting atom-diatom reactivity: Rigorous examination of Polanyi's rules and proposition of sudden vector projection (SVP) model
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/23/10.1063/1.4810007
1.
1. R. N. Zare, Science 279, 1875 (1998).
http://dx.doi.org/10.1126/science.279.5358.1875
2.
2. F. F. Crim, Acc. Chem. Res. 32, 877 (1999).
http://dx.doi.org/10.1021/ar950046a
3.
3. J. C. Polanyi, J. Chem. Phys 31, 1338 (1959).
http://dx.doi.org/10.1063/1.1730597
4.
4. J. C. Polanyi and W. H. Wong, J. Chem. Phys. 51, 1439 (1969).
http://dx.doi.org/10.1063/1.1672194
5.
5. K. G. Anlauf, D. H. Maylotte, J. C. Polanyi and R. B. Bernstein, J. Chem. Phys. 51, 5716 (1969).
http://dx.doi.org/10.1063/1.1672004
6.
6. J. C. Polanyi and D. C. Tardy, J. Chem. Phys. 51, 5717 (1969).
http://dx.doi.org/10.1063/1.1672005
7.
7. D. J. Douglas, J. C. Polanyi, and J. J. Sloan, J. Chem. Phys. 59, 6679 (1973).
http://dx.doi.org/10.1063/1.1680052
8.
8. A. M. G. Ding, L. J. Kirsch, D. S. Perry, J. C. Polanyi, and J. L. Schreibe, Faraday Disc. Chem. Soc. 55, 252 (1973).
http://dx.doi.org/10.1039/dc9735500252
9.
9. J. C. Polanyi and J. L. Schreiber, Faraday Disc. Chem. Soc. 62, 267 (1977).
http://dx.doi.org/10.1039/DC9776200267
10.
10. J. C. Polanyi, Acc. Chem. Res. 5, 161 (1972).
http://dx.doi.org/10.1021/ar50053a001
11.
11. J. C. Polanyi, Science 236, 680 (1987).
http://dx.doi.org/10.1126/science.236.4802.680
12.
12. R. D. Levine, Molecular Reaction Dynamics (Cambridge University Press, Cambridge, 2005).
13.
13. M. Kneba and J. Wolfrum, Annu. Rev. Phys. Chem. 31, 47 (1980).
http://dx.doi.org/10.1146/annurev.pc.31.100180.000403
14.
14. K. Liu, Int. Rev. Phys. Chem. 20, 189 (2001).
http://dx.doi.org/10.1080/01442350110034057
15.
15. S. C. Althorpe and D. C. Clary, Annu. Rev. Phys. Chem. 54, 493 (2003).
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103750
16.
16. H. Guo, Int. Rev. Phys. Chem. 31, 1 (2012).
http://dx.doi.org/10.1080/0144235X.2011.649999
17.
17. S. Y. Lin and H. Guo, J. Chem. Phys. 119, 11602 (2003).
http://dx.doi.org/10.1063/1.1624060
18.
18. S. Y. Lin and H. Guo, Phys. Rev. A 74, 022703 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.022703
19.
19. J. Ma, S. Y. Lin, H. Guo, Z. Sun, D. H. Zhang, and D. Xie, J. Chem. Phys 133, 054302 (2010).
http://dx.doi.org/10.1063/1.3455431
20.
20. J. C. Light and T. Carrington Jr., Adv. Chem. Phys. 114, 263 (2000).
http://dx.doi.org/10.1002/9780470141731.ch4
21.
21. R. N. Zare, Angular Momentum (Wiley, New York, 1988).
22.
22. R. Kosloff, in Numerical Grid Methods and Their Applications to Schrodinger's Equation, edited by C. Cerjan (Kluwer, Dordrecht, 1993), pp. 175194.
23.
23. R. C. Mowrey, J. Chem. Phys. 94, 7098 (1991).
http://dx.doi.org/10.1063/1.460243
24.
24. Z. Sun, H. Guo, and D. H. Zhang, J. Chem. Phys 132, 084112 (2010).
http://dx.doi.org/10.1063/1.3328109
25.
25. V. A. Mandelshtam and H. S. Taylor, J. Chem. Phys. 103, 2903 (1995).
http://dx.doi.org/10.1063/1.470477
26.
26. R. Chen and H. Guo, J. Chem. Phys. 108, 6068 (1998).
http://dx.doi.org/10.1063/1.476017
27.
27. S. K. Gray and G. G. Balint-Kurti, J. Chem. Phys. 108, 950 (1998).
http://dx.doi.org/10.1063/1.475495
28.
28. A. I. Boothroyd, W. J. Keogh, P. G. Martin, and M. R. Peterson, J. Chem. Phys. 104, 7139 (1996).
http://dx.doi.org/10.1063/1.471430
29.
29. G. Capecchi and H. J. Werner, Phys. Chem. Chem. Phys. 6, 4975 (2004).
http://dx.doi.org/10.1039/b411385c
30.
30. G. Li, H.-J. Werner, F. Lique, and M. H. Alexander, J. Chem. Phys. 127, 174302 (2007).
http://dx.doi.org/10.1063/1.2778421
31.
31. M. P. Deskevich, M. Y. Hayes, K. Takahashi, R. T. Skodje, and D. J. Nesbitt, J. Chem. Phys. 124, 224303 (2006).
http://dx.doi.org/10.1063/1.2192505
32.
32. F. J. Aoiz, L. Banares, and V. J. Herrero, Int. Rev. Phys. Chem. 24, 119 (2005).
http://dx.doi.org/10.1080/01442350500195659
33.
33. G. D. Barg, H. R. Mayne, and J. P. Toennies, J. Chem. Phys. 74, 1017 (1981).
http://dx.doi.org/10.1063/1.441234
34.
34. B. Liu and P. Siegbahn, J. Chem. Phys. 68, 2457 (1978).
http://dx.doi.org/10.1063/1.436018
35.
35. D. G. Truhlar and C. J. Horowitz, J. Chem. Phys. 68, 2466 (1978).
http://dx.doi.org/10.1063/1.436019
36.
36. J. Z. H. Zhang and W. H. Miller, J. Chem. Phys. 91, 1528 (1989).
http://dx.doi.org/10.1063/1.457650
37.
37. F. J. Aoiz, V. J. Herrero, and V. S. Rabanos, J. Chem. Phys. 94, 7991 (1991).
http://dx.doi.org/10.1063/1.460133
38.
38. P. G. Jambrina, E. Garcia, V. J. Herrero, V. Saez-Rabanos, and F. J. Aoiz, Phys. Chem. Chem. Phys. 14, 14596 (2012).
http://dx.doi.org/10.1039/c2cp42130e
39.
39. I. Schechter, R. Kosloff, and R. D. Levine, Chem. Phys. Lett. 121, 297 (1985).
http://dx.doi.org/10.1016/0009-2614(85)87182-7
40.
40. S. H. Lee and K. Liu, J. Chem. Phys. 111, 6253 (1999).
http://dx.doi.org/10.1063/1.479930
41.
41. F. Dong, S. H. Lee, and K. Liu, J. Chem. Phys. 115, 1197 (2001).
http://dx.doi.org/10.1063/1.1378834
42.
42. M. H. Alexander, G. Capecchi, and H.-J. Werner, Science 296, 715 (2002).
http://dx.doi.org/10.1126/science.1070472
43.
43. X. Wang, W. Dong, C. Xiao, L. Che, Z. Ren, D. Dai, X. Wang, P. Casavecchia, X. Yang, B. Jiang, D. Xie, Z. Sun, S.-Y. Lee, D. H. Zhang, H.-J. Werner, and M. H. Alexander, Science 322, 573 (2008).
http://dx.doi.org/10.1126/science.1163195
44.
44. A. Persky, R. Rubin, and M. Broida, J. Chem. Phys. 79, 3279 (1983).
http://dx.doi.org/10.1063/1.446221
45.
45. S. Yan, Y. T. Wu, B. Zhang, X.-F. Yue, and K. Liu, Science 316, 1723 (2007).
http://dx.doi.org/10.1126/science.1142313
46.
46. G. Czakó and J. M. Bowman, Science 334, 343 (2011).
http://dx.doi.org/10.1126/science.1208514
47.
47. Z. Zhang, Y. Zhou, D. H. Zhang, G. Czakó, and J. M. Bowman, J. Phys. Chem. Lett. 3, 3416 (2012).
http://dx.doi.org/10.1021/jz301649w
48.
48. F. Wang, J.-S. Lin, Y. Cheng, and K. Liu, J. Phys. Chem. Lett. 4, 323 (2013).
http://dx.doi.org/10.1021/jz302017e
49.
49. X. Yang and D. H. Zhang, Acc. Chem. Res. 41, 981 (2008).
http://dx.doi.org/10.1021/ar700258g
50.
50. R. L. Jaffe and J. B. Anderson, J. Chem. Phys. 54, 2224 (1971).
http://dx.doi.org/10.1063/1.1675156
51.
51. R. Sayos, J. Hernando, R. Francia, and M. Gonzalez, Phys. Chem. Chem. Phys. 2, 523 (2000).
http://dx.doi.org/10.1039/a908154b
52.
52. M. Hayes, M. P. Deskevich, D. J. Nesbitt, K. Takahashi, and R. T. Skodje, J. Phys. Chem. A 110, 436 (2006).
http://dx.doi.org/10.1021/jp0535745
53.
53. Z.-G. Sun, S. Y. Lee, and D.-H. Zhang, Chin. J. Chem. Phys. 20, 365 (2007).
http://dx.doi.org/10.1088/1674-0068/20/04/365-371
54.
54. A. M. Zolot and D. J. Nesbitt, J. Chem. Phys. 127, 114319 (2007).
http://dx.doi.org/10.1063/1.2770464
55.
55. R. Schinke, Photodissociation Dynamics (Cambridge University Press, Cambridge, 1993).
56.
56. J. Zhang, D. X. Dai, C. Wang, S. Harich, X. Wang, X. Yang, M. Gustafsson, and R. T. Skodje, Phys. Rev. Lett. 96, 093201 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.093201
57.
57. D. C. Chatfield, R. S. Friedman, D. G. Truhlar, B. C. Garrett, and D. W. Schwenke, J. Am. Chem. Soc. 113, 486 (1991).
http://dx.doi.org/10.1021/ja00002a016
58.
58. D. C. Chatfield, R. S. Friedman, D. W. Schwenke, and D. G. Truhlar, J. Phys. Chem. 96, 2414 (1992).
http://dx.doi.org/10.1021/j100185a007
59.
59. R. T. Skodje and X. Yang, Int. Rev. Phys. Chem. 23, 253 (2004).
http://dx.doi.org/10.1080/01442350412331284616
60.
60. M. Gustafsson and R. T. Skodje, J. Chem. Phys. 124, 144311 (2006).
http://dx.doi.org/10.1063/1.2187976
61.
61. G. L. Hofacker and N. Rösch, Ber. Bunsenges. Phys. Chem. 77, 661 (1973).
62.
62. J. W. Duff and D. G. Truhlar, J. Chem. Phys. 62, 2477 (1975).
http://dx.doi.org/10.1063/1.430727
63.
63. I. Schechter and R. D. Levine, J. Phys. Chem. 93, 7913 (1989).
http://dx.doi.org/10.1021/j100360a035
64.
64. J. C. Corchado, Y.-Y. Chuang, P. L. Fast, W.-P. Hu, Y.-P. Liu, G. C. Lynch, K. A. Nguyen, C. F. Jackels, A. Fernandez Ramos, B. A. Ellingson, B. J. Lynch, J. Zheng, V. S. Melissas, J. Villà, I. Rossi, E. L. Coitiño, J. Pu, T. V. Albu, R. Steckler, B. C. Garrett, A. D. Isaacson, and D. G. Truhlar, POLYRATE 9.7 (University of Minnesota, Minneapolis, 2007).
65.
65. L. Che, Z. Ren, X. Wang, W. Dong, D. Dai, X. Wang, D. H. Zhang, X. Yang, L. Sheng, G. Li, H.-J. Werner, F. Lique, and M. H. Alexander, Science 317, 1061 (2007).
http://dx.doi.org/10.1126/science.1144984
66.
66. P. J. Kuntz, E. M. Nemeth, J. C. Polanyi, S. D. Rosner, and C. E. Young, J. Chem. Phys. 44, 1168 (1966).
http://dx.doi.org/10.1063/1.1726803
67.
67. D. Skouteris, D. E. Manolopoulos, W. Bian, H.-J. Werner, L.-H. Lai, and K. Liu, Science 286, 1713 (1999).
http://dx.doi.org/10.1126/science.286.5445.1713
68.
68. G. Czakó and J. M. Bowman, J. Am. Chem. Soc. 131, 17534 (2009).
http://dx.doi.org/10.1021/ja906886z
69.
69. J. Li, B. Jiang, and H. Guo, Chem. Sci. 4, 629 (2013).
http://dx.doi.org/10.1039/c2sc21457a
70.
70. B. Jiang, R. Liu, J. Li, D. Xie, M. Yang, and H. Guo, “Mode selectivity in methane dissociative chemisorption on Ni(111),” Chem. Sci. (to be published).
71.
71. W. H. Miller, N. C. Handy, and J. E. Adams, J. Chem. Phys. 72, 99 (1980).
http://dx.doi.org/10.1063/1.438959
72.
72. W. T. Duncan and T. N. Truong, J. Chem. Phys. 103, 9642 (1995).
http://dx.doi.org/10.1063/1.470731
73.
73. J. C. Corchado, D. G. Truhlar, and J. Espinosa-García, J. Chem. Phys. 112, 9375 (2000).
http://dx.doi.org/10.1063/1.481602
74.
74. L. Halonen, S. L. Bernasek, and D. J. Nesbitt, J. Chem. Phys. 115, 5611 (2001).
http://dx.doi.org/10.1063/1.1398075
75.
75. S. Yoon, R. J. Holiday, E. L. Sibert III, and F. F. Crim, J. Chem. Phys. 119, 9568 (2003).
http://dx.doi.org/10.1063/1.1615755
76.
76. J. Sansón, J. C. Corchado, C. Rangel, and J. Espinosa-García, J. Chem. Phys. 124, 074312 (2006).
http://dx.doi.org/10.1063/1.2172608
77.
77. S. Yan, Y.-T. Wu, and K. Liu, Proc. Natl. Acad. Sci. U.S.A. 105, 12667 (2008).
http://dx.doi.org/10.1073/pnas.0800220105
78.
78. W. R. Simpson, T. P. Rakitzis, S. A. Kandel, T. Lev-On, and R. N. Zare, J. Phys. Chem. 100, 7938 (1996).
http://dx.doi.org/10.1021/jp952627n
79.
79. H. Kawamata and K. Liu, J. Chem. Phys. 133, 124304 (2010).
http://dx.doi.org/10.1063/1.3482628
80.
80. H. A. Bechtel, J. P. Camden, D. J. A. Brown, and R. N. Zare, J. Chem. Phys. 120, 5096 (2004).
http://dx.doi.org/10.1063/1.1647533
81.
81. S. Yoon, S. Henton, A. N. Zivkovic, and F. F. Crim, J. Chem. Phys. 116, 10744 (2002).
http://dx.doi.org/10.1063/1.1476318
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/23/10.1063/1.4810007
Loading
/content/aip/journal/jcp/138/23/10.1063/1.4810007
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/23/10.1063/1.4810007
2013-06-18
2014-10-21

Abstract

To provide a systematic and rigorous re-examination of the well-known Polanyi's rules, excitation functions of several A + BC( = 0, 1) reactions are determined using the Chebyshev real wave packet method on accurate potential energy surfaces. Reactions with early (F + H and F + HCl), late (Cl + H), and central (H/D/Mu + H, where Mu is a short-lived light isotope of H) barriers are represented. Although Polanyi's rules are in general consistent with the quantum dynamical results, their predictions are strictly valid only in certain energy ranges divided by a cross-over point. In particular, vibrational excitation of the diatomic reactant typically enhances reactivity more effectively than translational excitation at high energies, while reverse is true at low energies. This feature persists irrespective of the barrier location. A sudden vector projection model is proposed as an alternative to Polanyi's rules. It is found to give similar, but more quantitative, predictions about mode selectivity in these reactions, and has the advantage to be extendible to reactions involving polyatomic molecules.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/23/1.4810007.html;jsessionid=y2scd5tkor2i.x-aip-live-02?itemId=/content/aip/journal/jcp/138/23/10.1063/1.4810007&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Relative efficacy of vibrational vs. translational excitation in promoting atom-diatom reactivity: Rigorous examination of Polanyi's rules and proposition of sudden vector projection (SVP) model
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/23/10.1063/1.4810007
10.1063/1.4810007
SEARCH_EXPAND_ITEM